L(s) = 1 | + (0.955 − 0.294i)2-s + (−0.266 − 0.680i)3-s + (0.826 − 0.563i)4-s + (−0.455 − 0.571i)6-s + (−0.623 + 0.781i)7-s + (0.623 − 0.781i)8-s + (0.341 − 0.317i)9-s + (1.40 + 1.29i)11-s + (−0.603 − 0.411i)12-s + (−0.425 + 1.86i)13-s + (−0.365 + 0.930i)14-s + (0.365 − 0.930i)16-s + (0.0747 − 0.997i)17-s + (0.233 − 0.403i)18-s + (0.698 + 0.215i)21-s + (1.72 + 0.829i)22-s + ⋯ |
L(s) = 1 | + (0.955 − 0.294i)2-s + (−0.266 − 0.680i)3-s + (0.826 − 0.563i)4-s + (−0.455 − 0.571i)6-s + (−0.623 + 0.781i)7-s + (0.623 − 0.781i)8-s + (0.341 − 0.317i)9-s + (1.40 + 1.29i)11-s + (−0.603 − 0.411i)12-s + (−0.425 + 1.86i)13-s + (−0.365 + 0.930i)14-s + (0.365 − 0.930i)16-s + (0.0747 − 0.997i)17-s + (0.233 − 0.403i)18-s + (0.698 + 0.215i)21-s + (1.72 + 0.829i)22-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.801+0.598i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.801+0.598i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
0.801+0.598i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(1495,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 0.801+0.598i)
|
Particular Values
L(21) |
≈ |
2.246547469 |
L(21) |
≈ |
2.246547469 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.955+0.294i)T |
| 7 | 1+(0.623−0.781i)T |
| 17 | 1+(−0.0747+0.997i)T |
good | 3 | 1+(0.266+0.680i)T+(−0.733+0.680i)T2 |
| 5 | 1+(−0.955−0.294i)T2 |
| 11 | 1+(−1.40−1.29i)T+(0.0747+0.997i)T2 |
| 13 | 1+(0.425−1.86i)T+(−0.900−0.433i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.0332−0.443i)T+(−0.988+0.149i)T2 |
| 29 | 1+(−0.623+0.781i)T2 |
| 31 | 1+(−0.623+1.07i)T+(−0.5−0.866i)T2 |
| 37 | 1+(−0.365−0.930i)T2 |
| 41 | 1+(0.222+0.974i)T2 |
| 43 | 1+(0.222−0.974i)T2 |
| 47 | 1+(−0.826+0.563i)T2 |
| 53 | 1+(1.63−1.11i)T+(0.365−0.930i)T2 |
| 59 | 1+(−0.955+0.294i)T2 |
| 61 | 1+(−0.365−0.930i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(1.78+0.858i)T+(0.623+0.781i)T2 |
| 73 | 1+(−0.826−0.563i)T2 |
| 79 | 1+(0.733+1.26i)T+(−0.5+0.866i)T2 |
| 83 | 1+(0.900−0.433i)T2 |
| 89 | 1+(0.535−0.496i)T+(0.0747−0.997i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.199205246674514842318658224276, −7.46662315394007968908305174012, −6.95552046449477963964985644840, −6.53631098396123687330796528636, −5.87591839597914848311735663058, −4.62411971589807727501542588801, −4.30788202330039600581508142773, −3.15226638043441795505611865683, −2.09130813610060044664796470791, −1.44193082633587682056472683209,
1.22566605082284894282357981892, 2.97362964193008432063377579915, 3.48867612891534832571942982020, 4.23612500687160718951848652774, 5.01209024679849794518841880692, 5.85277508068631038198497304899, 6.44163803049818955634231352863, 7.17901306241707183224877304353, 8.098321046637619834752668418104, 8.669418904240607130225814318028