L(s) = 1 | + (0.955 − 0.294i)2-s + (−0.266 − 0.680i)3-s + (0.826 − 0.563i)4-s + (−0.455 − 0.571i)6-s + (−0.623 + 0.781i)7-s + (0.623 − 0.781i)8-s + (0.341 − 0.317i)9-s + (1.40 + 1.29i)11-s + (−0.603 − 0.411i)12-s + (−0.425 + 1.86i)13-s + (−0.365 + 0.930i)14-s + (0.365 − 0.930i)16-s + (0.0747 − 0.997i)17-s + (0.233 − 0.403i)18-s + (0.698 + 0.215i)21-s + (1.72 + 0.829i)22-s + ⋯ |
L(s) = 1 | + (0.955 − 0.294i)2-s + (−0.266 − 0.680i)3-s + (0.826 − 0.563i)4-s + (−0.455 − 0.571i)6-s + (−0.623 + 0.781i)7-s + (0.623 − 0.781i)8-s + (0.341 − 0.317i)9-s + (1.40 + 1.29i)11-s + (−0.603 − 0.411i)12-s + (−0.425 + 1.86i)13-s + (−0.365 + 0.930i)14-s + (0.365 − 0.930i)16-s + (0.0747 − 0.997i)17-s + (0.233 − 0.403i)18-s + (0.698 + 0.215i)21-s + (1.72 + 0.829i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.801 + 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.801 + 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.246547469\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.246547469\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.955 + 0.294i)T \) |
| 7 | \( 1 + (0.623 - 0.781i)T \) |
| 17 | \( 1 + (-0.0747 + 0.997i)T \) |
good | 3 | \( 1 + (0.266 + 0.680i)T + (-0.733 + 0.680i)T^{2} \) |
| 5 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 11 | \( 1 + (-1.40 - 1.29i)T + (0.0747 + 0.997i)T^{2} \) |
| 13 | \( 1 + (0.425 - 1.86i)T + (-0.900 - 0.433i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.0332 - 0.443i)T + (-0.988 + 0.149i)T^{2} \) |
| 29 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 + (-0.623 + 1.07i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 41 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 43 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 47 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 53 | \( 1 + (1.63 - 1.11i)T + (0.365 - 0.930i)T^{2} \) |
| 59 | \( 1 + (-0.955 + 0.294i)T^{2} \) |
| 61 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (1.78 + 0.858i)T + (0.623 + 0.781i)T^{2} \) |
| 73 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 79 | \( 1 + (0.733 + 1.26i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 89 | \( 1 + (0.535 - 0.496i)T + (0.0747 - 0.997i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.199205246674514842318658224276, −7.46662315394007968908305174012, −6.95552046449477963964985644840, −6.53631098396123687330796528636, −5.87591839597914848311735663058, −4.62411971589807727501542588801, −4.30788202330039600581508142773, −3.15226638043441795505611865683, −2.09130813610060044664796470791, −1.44193082633587682056472683209,
1.22566605082284894282357981892, 2.97362964193008432063377579915, 3.48867612891534832571942982020, 4.23612500687160718951848652774, 5.01209024679849794518841880692, 5.85277508068631038198497304899, 6.44163803049818955634231352863, 7.17901306241707183224877304353, 8.098321046637619834752668418104, 8.669418904240607130225814318028