L(s) = 1 | + (−0.826 + 0.563i)2-s + (−0.997 + 0.925i)3-s + (0.365 − 0.930i)4-s + (0.302 − 1.32i)6-s + (0.974 − 0.222i)7-s + (0.222 + 0.974i)8-s + (0.0635 − 0.848i)9-s + (−0.0841 − 1.12i)11-s + (0.496 + 1.26i)12-s + (1.48 + 0.716i)13-s + (−0.680 + 0.733i)14-s + (−0.733 − 0.680i)16-s + (−0.988 − 0.149i)17-s + (0.425 + 0.736i)18-s + (−0.766 + 1.12i)21-s + (0.702 + 0.880i)22-s + ⋯ |
L(s) = 1 | + (−0.826 + 0.563i)2-s + (−0.997 + 0.925i)3-s + (0.365 − 0.930i)4-s + (0.302 − 1.32i)6-s + (0.974 − 0.222i)7-s + (0.222 + 0.974i)8-s + (0.0635 − 0.848i)9-s + (−0.0841 − 1.12i)11-s + (0.496 + 1.26i)12-s + (1.48 + 0.716i)13-s + (−0.680 + 0.733i)14-s + (−0.733 − 0.680i)16-s + (−0.988 − 0.149i)17-s + (0.425 + 0.736i)18-s + (−0.766 + 1.12i)21-s + (0.702 + 0.880i)22-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.788−0.615i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.788−0.615i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
0.788−0.615i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(135,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 0.788−0.615i)
|
Particular Values
L(21) |
≈ |
0.6871667625 |
L(21) |
≈ |
0.6871667625 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.826−0.563i)T |
| 7 | 1+(−0.974+0.222i)T |
| 17 | 1+(0.988+0.149i)T |
good | 3 | 1+(0.997−0.925i)T+(0.0747−0.997i)T2 |
| 5 | 1+(−0.826−0.563i)T2 |
| 11 | 1+(0.0841+1.12i)T+(−0.988+0.149i)T2 |
| 13 | 1+(−1.48−0.716i)T+(0.623+0.781i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 23 | 1+(−0.858+0.129i)T+(0.955−0.294i)T2 |
| 29 | 1+(0.222+0.974i)T2 |
| 31 | 1+(0.974+1.68i)T+(−0.5+0.866i)T2 |
| 37 | 1+(0.733−0.680i)T2 |
| 41 | 1+(0.900−0.433i)T2 |
| 43 | 1+(0.900+0.433i)T2 |
| 47 | 1+(−0.365+0.930i)T2 |
| 53 | 1+(−0.698+1.77i)T+(−0.733−0.680i)T2 |
| 59 | 1+(−0.826+0.563i)T2 |
| 61 | 1+(0.733−0.680i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1+(0.367+0.460i)T+(−0.222+0.974i)T2 |
| 73 | 1+(−0.365−0.930i)T2 |
| 79 | 1+(−0.997+1.72i)T+(−0.5−0.866i)T2 |
| 83 | 1+(−0.623+0.781i)T2 |
| 89 | 1+(−0.109+1.46i)T+(−0.988−0.149i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.865147302321086401007807923064, −8.356687446892023947957248068065, −7.40878988605289469422696899339, −6.51279258841133665688157733622, −5.91868716172173508576143866859, −5.21810361843325993482173046195, −4.53834125789914560905395495492, −3.62659830537685171480210945874, −2.01107999415447734150929260852, −0.78403436064583527412418920883,
1.09895376787393161775256216249, 1.69633659702278923578541159927, 2.78718756952811722226016625516, 4.04412857388394656513096891107, 4.98538956853289925183770161165, 5.83346150391146038446882588573, 6.86117787210148242290715027570, 7.09489641885821884883580791834, 8.092596164706765649935201470398, 8.649059902684114477405934109052