L(s) = 1 | − 3-s − 2·9-s − 5·11-s − 5·13-s − 17-s − 6·19-s + 4·23-s − 5·25-s + 5·27-s + 4·29-s + 5·33-s + 8·37-s + 5·39-s + 4·41-s − 6·43-s − 6·47-s + 51-s + 11·53-s + 6·57-s + 10·59-s + 10·67-s − 4·69-s + 9·71-s + 4·73-s + 5·75-s + 9·79-s + 81-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 2/3·9-s − 1.50·11-s − 1.38·13-s − 0.242·17-s − 1.37·19-s + 0.834·23-s − 25-s + 0.962·27-s + 0.742·29-s + 0.870·33-s + 1.31·37-s + 0.800·39-s + 0.624·41-s − 0.914·43-s − 0.875·47-s + 0.140·51-s + 1.51·53-s + 0.794·57-s + 1.30·59-s + 1.22·67-s − 0.481·69-s + 1.06·71-s + 0.468·73-s + 0.577·75-s + 1.01·79-s + 1/9·81-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3332s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.6403012744 |
L(21) |
≈ |
0.6403012744 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 17 | 1+T |
good | 3 | 1+T+pT2 |
| 5 | 1+pT2 |
| 11 | 1+5T+pT2 |
| 13 | 1+5T+pT2 |
| 19 | 1+6T+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1−4T+pT2 |
| 31 | 1+pT2 |
| 37 | 1−8T+pT2 |
| 41 | 1−4T+pT2 |
| 43 | 1+6T+pT2 |
| 47 | 1+6T+pT2 |
| 53 | 1−11T+pT2 |
| 59 | 1−10T+pT2 |
| 61 | 1+pT2 |
| 67 | 1−10T+pT2 |
| 71 | 1−9T+pT2 |
| 73 | 1−4T+pT2 |
| 79 | 1−9T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1+15T+pT2 |
| 97 | 1+18T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.374012440735736479868877176293, −8.042300812665714533613275999044, −7.04860562711275482218570288402, −6.38511506014092420612219539214, −5.40864521517896805635688508757, −5.04360908944665888730354415016, −4.11321335610142599569466903869, −2.73780970066283753303466245103, −2.31208754219170212371373460686, −0.45582208180966446071572557340,
0.45582208180966446071572557340, 2.31208754219170212371373460686, 2.73780970066283753303466245103, 4.11321335610142599569466903869, 5.04360908944665888730354415016, 5.40864521517896805635688508757, 6.38511506014092420612219539214, 7.04860562711275482218570288402, 8.042300812665714533613275999044, 8.374012440735736479868877176293