L(s) = 1 | + 2-s + 4-s − 5-s + 7-s + 8-s − 10-s − 3·11-s + 14-s + 16-s − 3·17-s − 6·19-s − 20-s − 3·22-s − 2·23-s + 25-s + 28-s + 3·29-s + 3·31-s + 32-s − 3·34-s − 35-s − 37-s − 6·38-s − 40-s − 3·41-s − 43-s − 3·44-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s − 0.904·11-s + 0.267·14-s + 1/4·16-s − 0.727·17-s − 1.37·19-s − 0.223·20-s − 0.639·22-s − 0.417·23-s + 1/5·25-s + 0.188·28-s + 0.557·29-s + 0.538·31-s + 0.176·32-s − 0.514·34-s − 0.169·35-s − 0.164·37-s − 0.973·38-s − 0.158·40-s − 0.468·41-s − 0.152·43-s − 0.452·44-s + ⋯ |
Λ(s)=(=(3330s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3330s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 5 | 1+T |
| 37 | 1+T |
good | 7 | 1−T+pT2 |
| 11 | 1+3T+pT2 |
| 13 | 1+pT2 |
| 17 | 1+3T+pT2 |
| 19 | 1+6T+pT2 |
| 23 | 1+2T+pT2 |
| 29 | 1−3T+pT2 |
| 31 | 1−3T+pT2 |
| 41 | 1+3T+pT2 |
| 43 | 1+T+pT2 |
| 47 | 1+4T+pT2 |
| 53 | 1+13T+pT2 |
| 59 | 1+pT2 |
| 61 | 1+15T+pT2 |
| 67 | 1+pT2 |
| 71 | 1−2T+pT2 |
| 73 | 1+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1−18T+pT2 |
| 97 | 1+7T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.146451497996909742414741839962, −7.55947946358028496449425566831, −6.56405990058932844390013504676, −6.08056229568137165407273954903, −4.83332190202465636941309325541, −4.63919100492136925221940798677, −3.56154188220255317605428378165, −2.65455170884079945670816110578, −1.73957054101312727200784638700, 0,
1.73957054101312727200784638700, 2.65455170884079945670816110578, 3.56154188220255317605428378165, 4.63919100492136925221940798677, 4.83332190202465636941309325541, 6.08056229568137165407273954903, 6.56405990058932844390013504676, 7.55947946358028496449425566831, 8.146451497996909742414741839962