Properties

Label 2-3328-8.5-c1-0-12
Degree $2$
Conductor $3328$
Sign $-0.707 + 0.707i$
Analytic cond. $26.5742$
Root an. cond. $5.15501$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.23i·3-s + 3i·5-s + 2.23·7-s − 2.00·9-s + 4.47i·11-s + i·13-s − 6.70·15-s − 3·17-s − 4.47i·19-s + 5.00i·21-s − 8.94·23-s − 4·25-s + 2.23i·27-s − 10i·29-s − 10.0·33-s + ⋯
L(s)  = 1  + 1.29i·3-s + 1.34i·5-s + 0.845·7-s − 0.666·9-s + 1.34i·11-s + 0.277i·13-s − 1.73·15-s − 0.727·17-s − 1.02i·19-s + 1.09i·21-s − 1.86·23-s − 0.800·25-s + 0.430i·27-s − 1.85i·29-s − 1.74·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3328\)    =    \(2^{8} \cdot 13\)
Sign: $-0.707 + 0.707i$
Analytic conductor: \(26.5742\)
Root analytic conductor: \(5.15501\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3328} (1665, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3328,\ (\ :1/2),\ -0.707 + 0.707i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.265525316\)
\(L(\frac12)\) \(\approx\) \(1.265525316\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - iT \)
good3 \( 1 - 2.23iT - 3T^{2} \)
5 \( 1 - 3iT - 5T^{2} \)
7 \( 1 - 2.23T + 7T^{2} \)
11 \( 1 - 4.47iT - 11T^{2} \)
17 \( 1 + 3T + 17T^{2} \)
19 \( 1 + 4.47iT - 19T^{2} \)
23 \( 1 + 8.94T + 23T^{2} \)
29 \( 1 + 10iT - 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 3iT - 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 6.70iT - 43T^{2} \)
47 \( 1 + 2.23T + 47T^{2} \)
53 \( 1 - 4iT - 53T^{2} \)
59 \( 1 - 4.47iT - 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 - 13.4iT - 67T^{2} \)
71 \( 1 - 6.70T + 71T^{2} \)
73 \( 1 + 14T + 73T^{2} \)
79 \( 1 - 8.94T + 79T^{2} \)
83 \( 1 - 17.8iT - 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.329269829423901381406771024068, −8.383669195273141069950298744852, −7.54383883445810561823918469716, −6.90046795087838769933835325198, −6.10746565822432930091051026768, −5.05303213584734202699689688518, −4.31850489629127107782029398352, −3.93073584593977016905232276533, −2.63571475388658294722741457533, −2.00428988594600100214551510481, 0.36781695494391838827899421765, 1.41432921684726186387629782177, 1.92462084059525295215857969172, 3.35588060359060981566985045467, 4.39125785254593678461574087875, 5.23116982894672747637051606040, 5.94253520243105416126131206293, 6.58729584588435536777439207868, 7.78171600246497402485886233207, 8.068793140220475787863403631665

Graph of the $Z$-function along the critical line