L(s) = 1 | + 2.23i·3-s − 3i·5-s − 2.23·7-s − 2.00·9-s + 4.47i·11-s − i·13-s + 6.70·15-s − 3·17-s − 4.47i·19-s − 5.00i·21-s + 8.94·23-s − 4·25-s + 2.23i·27-s + 10i·29-s − 10.0·33-s + ⋯ |
L(s) = 1 | + 1.29i·3-s − 1.34i·5-s − 0.845·7-s − 0.666·9-s + 1.34i·11-s − 0.277i·13-s + 1.73·15-s − 0.727·17-s − 1.02i·19-s − 1.09i·21-s + 1.86·23-s − 0.800·25-s + 0.430i·27-s + 1.85i·29-s − 1.74·33-s + ⋯ |
Λ(s)=(=(3328s/2ΓC(s)L(s)(−0.707−0.707i)Λ(2−s)
Λ(s)=(=(3328s/2ΓC(s+1/2)L(s)(−0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
3328
= 28⋅13
|
Sign: |
−0.707−0.707i
|
Analytic conductor: |
26.5742 |
Root analytic conductor: |
5.15501 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3328(1665,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3328, ( :1/2), −0.707−0.707i)
|
Particular Values
L(1) |
≈ |
1.047023399 |
L(21) |
≈ |
1.047023399 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+iT |
good | 3 | 1−2.23iT−3T2 |
| 5 | 1+3iT−5T2 |
| 7 | 1+2.23T+7T2 |
| 11 | 1−4.47iT−11T2 |
| 17 | 1+3T+17T2 |
| 19 | 1+4.47iT−19T2 |
| 23 | 1−8.94T+23T2 |
| 29 | 1−10iT−29T2 |
| 31 | 1+31T2 |
| 37 | 1+3iT−37T2 |
| 41 | 1+41T2 |
| 43 | 1+6.70iT−43T2 |
| 47 | 1−2.23T+47T2 |
| 53 | 1+4iT−53T2 |
| 59 | 1−4.47iT−59T2 |
| 61 | 1−61T2 |
| 67 | 1−13.4iT−67T2 |
| 71 | 1+6.70T+71T2 |
| 73 | 1+14T+73T2 |
| 79 | 1+8.94T+79T2 |
| 83 | 1−17.8iT−83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1+2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.053925337611489955523338613967, −8.669344238771729829735942059260, −7.23020843772506476284103900136, −6.84866079041310868796611732616, −5.45387803173768776976184704064, −4.93670705825449601930891939898, −4.47870854996578677207664046055, −3.59811192331837045214888222113, −2.60814400776212100639895005951, −1.16725832193935022155067138059,
0.34352469053775353781739827941, 1.65138137018106984412920096306, 2.85817313257320118487583343621, 3.13000360775533887724957644628, 4.33468644254046648056491850628, 5.86379107399020928099026297478, 6.26603900581626992646417359105, 6.77980492793573926877724113882, 7.45564683007980874631160375630, 8.137529171714767835562183514671