L(s) = 1 | + 2.23i·3-s − 3i·5-s − 2.23·7-s − 2.00·9-s + 4.47i·11-s − i·13-s + 6.70·15-s − 3·17-s − 4.47i·19-s − 5.00i·21-s + 8.94·23-s − 4·25-s + 2.23i·27-s + 10i·29-s − 10.0·33-s + ⋯ |
L(s) = 1 | + 1.29i·3-s − 1.34i·5-s − 0.845·7-s − 0.666·9-s + 1.34i·11-s − 0.277i·13-s + 1.73·15-s − 0.727·17-s − 1.02i·19-s − 1.09i·21-s + 1.86·23-s − 0.800·25-s + 0.430i·27-s + 1.85i·29-s − 1.74·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.047023399\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.047023399\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 3 | \( 1 - 2.23iT - 3T^{2} \) |
| 5 | \( 1 + 3iT - 5T^{2} \) |
| 7 | \( 1 + 2.23T + 7T^{2} \) |
| 11 | \( 1 - 4.47iT - 11T^{2} \) |
| 17 | \( 1 + 3T + 17T^{2} \) |
| 19 | \( 1 + 4.47iT - 19T^{2} \) |
| 23 | \( 1 - 8.94T + 23T^{2} \) |
| 29 | \( 1 - 10iT - 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + 3iT - 37T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + 6.70iT - 43T^{2} \) |
| 47 | \( 1 - 2.23T + 47T^{2} \) |
| 53 | \( 1 + 4iT - 53T^{2} \) |
| 59 | \( 1 - 4.47iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 - 13.4iT - 67T^{2} \) |
| 71 | \( 1 + 6.70T + 71T^{2} \) |
| 73 | \( 1 + 14T + 73T^{2} \) |
| 79 | \( 1 + 8.94T + 79T^{2} \) |
| 83 | \( 1 - 17.8iT - 83T^{2} \) |
| 89 | \( 1 - 10T + 89T^{2} \) |
| 97 | \( 1 + 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.053925337611489955523338613967, −8.669344238771729829735942059260, −7.23020843772506476284103900136, −6.84866079041310868796611732616, −5.45387803173768776976184704064, −4.93670705825449601930891939898, −4.47870854996578677207664046055, −3.59811192331837045214888222113, −2.60814400776212100639895005951, −1.16725832193935022155067138059,
0.34352469053775353781739827941, 1.65138137018106984412920096306, 2.85817313257320118487583343621, 3.13000360775533887724957644628, 4.33468644254046648056491850628, 5.86379107399020928099026297478, 6.26603900581626992646417359105, 6.77980492793573926877724113882, 7.45564683007980874631160375630, 8.137529171714767835562183514671