| L(s) = 1 | + (0.913 − 0.406i)4-s + (−0.978 − 0.207i)5-s + (0.669 − 0.743i)7-s + (0.669 − 0.743i)9-s + (0.895 + 0.994i)11-s + (0.669 − 0.743i)16-s + (0.169 + 1.60i)17-s + (0.913 + 0.406i)19-s + (−0.978 + 0.207i)20-s + (−1.30 + 0.278i)23-s + (0.913 + 0.406i)25-s + (0.309 − 0.951i)28-s + (−0.809 + 0.587i)35-s + (0.309 − 0.951i)36-s − 0.209·43-s + (1.22 + 0.544i)44-s + ⋯ |
| L(s) = 1 | + (0.913 − 0.406i)4-s + (−0.978 − 0.207i)5-s + (0.669 − 0.743i)7-s + (0.669 − 0.743i)9-s + (0.895 + 0.994i)11-s + (0.669 − 0.743i)16-s + (0.169 + 1.60i)17-s + (0.913 + 0.406i)19-s + (−0.978 + 0.207i)20-s + (−1.30 + 0.278i)23-s + (0.913 + 0.406i)25-s + (0.309 − 0.951i)28-s + (−0.809 + 0.587i)35-s + (0.309 − 0.951i)36-s − 0.209·43-s + (1.22 + 0.544i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.855 + 0.518i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.855 + 0.518i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.629896271\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.629896271\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (0.978 + 0.207i)T \) |
| 7 | \( 1 + (-0.669 + 0.743i)T \) |
| 19 | \( 1 + (-0.913 - 0.406i)T \) |
| good | 2 | \( 1 + (-0.913 + 0.406i)T^{2} \) |
| 3 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 11 | \( 1 + (-0.895 - 0.994i)T + (-0.104 + 0.994i)T^{2} \) |
| 13 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.169 - 1.60i)T + (-0.978 + 0.207i)T^{2} \) |
| 23 | \( 1 + (1.30 - 0.278i)T + (0.913 - 0.406i)T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 37 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 41 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + 0.209T + T^{2} \) |
| 47 | \( 1 + (-0.104 + 0.994i)T + (-0.978 - 0.207i)T^{2} \) |
| 53 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 59 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 61 | \( 1 + (1.78 - 0.379i)T + (0.913 - 0.406i)T^{2} \) |
| 67 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 71 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (0.669 + 0.743i)T + (-0.104 + 0.994i)T^{2} \) |
| 79 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 83 | \( 1 + (-0.169 + 0.122i)T + (0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + (-0.913 + 0.406i)T^{2} \) |
| 97 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.610777167097304100879379109450, −7.71084465074251087319628289517, −7.38211721378098410446270962136, −6.62163066494289993028403407573, −5.89702246268038056214690082313, −4.73445043220888966046302341340, −3.97666538918420447289370935384, −3.49854292253451760257430864916, −1.78993117979823484958525506183, −1.25982092506756185889585978157,
1.32018958472234252138875192984, 2.51934274417005110749127923333, 3.20659155832287738534148572204, 4.17918856841920125188924443629, 5.00558883807286364287187600616, 5.95345701476326104619369458372, 6.78778599851266975713075814638, 7.56241661626538331040851831310, 7.895265751030419064746216233677, 8.697566154414844744077382287568