Properties

Label 2-33-33.2-c5-0-12
Degree $2$
Conductor $33$
Sign $0.420 + 0.907i$
Analytic cond. $5.29266$
Root an. cond. $2.30057$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.489 − 1.50i)2-s + (4.79 − 14.8i)3-s + (23.8 + 17.3i)4-s + (16.6 − 5.40i)5-s + (−20.0 − 14.5i)6-s + (36.5 − 50.2i)7-s + (78.8 − 57.3i)8-s + (−196. − 142. i)9-s − 27.7i·10-s + (−56.2 − 397. i)11-s + (371. − 270. i)12-s + (283. + 92.1i)13-s + (−57.9 − 79.7i)14-s + (−0.335 − 272. i)15-s + (243. + 750. i)16-s + (320. + 985. i)17-s + ⋯
L(s)  = 1  + (0.0866 − 0.266i)2-s + (0.307 − 0.951i)3-s + (0.745 + 0.541i)4-s + (0.297 − 0.0967i)5-s + (−0.226 − 0.164i)6-s + (0.281 − 0.387i)7-s + (0.435 − 0.316i)8-s + (−0.810 − 0.585i)9-s − 0.0877i·10-s + (−0.140 − 0.990i)11-s + (0.744 − 0.542i)12-s + (0.465 + 0.151i)13-s + (−0.0790 − 0.108i)14-s + (−0.000385 − 0.313i)15-s + (0.238 + 0.732i)16-s + (0.268 + 0.826i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.420 + 0.907i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.420 + 0.907i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $0.420 + 0.907i$
Analytic conductor: \(5.29266\)
Root analytic conductor: \(2.30057\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (2, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :5/2),\ 0.420 + 0.907i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.79338 - 1.14535i\)
\(L(\frac12)\) \(\approx\) \(1.79338 - 1.14535i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-4.79 + 14.8i)T \)
11 \( 1 + (56.2 + 397. i)T \)
good2 \( 1 + (-0.489 + 1.50i)T + (-25.8 - 18.8i)T^{2} \)
5 \( 1 + (-16.6 + 5.40i)T + (2.52e3 - 1.83e3i)T^{2} \)
7 \( 1 + (-36.5 + 50.2i)T + (-5.19e3 - 1.59e4i)T^{2} \)
13 \( 1 + (-283. - 92.1i)T + (3.00e5 + 2.18e5i)T^{2} \)
17 \( 1 + (-320. - 985. i)T + (-1.14e6 + 8.34e5i)T^{2} \)
19 \( 1 + (821. + 1.13e3i)T + (-7.65e5 + 2.35e6i)T^{2} \)
23 \( 1 - 3.74e3iT - 6.43e6T^{2} \)
29 \( 1 + (-5.35e3 - 3.88e3i)T + (6.33e6 + 1.95e7i)T^{2} \)
31 \( 1 + (153. - 473. i)T + (-2.31e7 - 1.68e7i)T^{2} \)
37 \( 1 + (-219. - 159. i)T + (2.14e7 + 6.59e7i)T^{2} \)
41 \( 1 + (3.71e3 - 2.69e3i)T + (3.58e7 - 1.10e8i)T^{2} \)
43 \( 1 + 1.41e4iT - 1.47e8T^{2} \)
47 \( 1 + (2.15e3 + 2.96e3i)T + (-7.08e7 + 2.18e8i)T^{2} \)
53 \( 1 + (1.25e4 + 4.07e3i)T + (3.38e8 + 2.45e8i)T^{2} \)
59 \( 1 + (5.22e3 - 7.19e3i)T + (-2.20e8 - 6.79e8i)T^{2} \)
61 \( 1 + (2.29e4 - 7.46e3i)T + (6.83e8 - 4.96e8i)T^{2} \)
67 \( 1 + 5.39e4T + 1.35e9T^{2} \)
71 \( 1 + (-9.42e3 + 3.06e3i)T + (1.45e9 - 1.06e9i)T^{2} \)
73 \( 1 + (-3.52e3 + 4.85e3i)T + (-6.40e8 - 1.97e9i)T^{2} \)
79 \( 1 + (-9.39e4 - 3.05e4i)T + (2.48e9 + 1.80e9i)T^{2} \)
83 \( 1 + (3.57e4 + 1.09e5i)T + (-3.18e9 + 2.31e9i)T^{2} \)
89 \( 1 + 1.13e5iT - 5.58e9T^{2} \)
97 \( 1 + (-5.21e3 + 1.60e4i)T + (-6.94e9 - 5.04e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.47434336709515353089736171108, −13.87538290261889169947969674827, −13.09281191689076874089413373471, −11.82302703567375605982801786497, −10.78817673701791957081261648757, −8.661603289341752508579161654842, −7.48303765824400878687239891378, −6.12354130898425926886410117017, −3.32997006612416403977047121857, −1.53523886583981616768760188356, 2.38458277359853747334573840125, 4.74524061250738295482723037538, 6.21246574805974244668375548813, 8.076125561579450929263787835360, 9.758157058070178923225289709763, 10.64493264826964078333494820167, 12.01811638805315986200434517495, 13.99428572811074198712104482259, 14.88163060998590816063756410471, 15.72880844935782172888273334150

Graph of the $Z$-function along the critical line