Properties

Label 2-33-33.17-c5-0-13
Degree $2$
Conductor $33$
Sign $0.290 + 0.956i$
Analytic cond. $5.29266$
Root an. cond. $2.30057$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.12 + 3.46i)2-s + (4.32 − 14.9i)3-s + (15.1 − 10.9i)4-s + (−54.0 − 17.5i)5-s + (56.8 − 1.88i)6-s + (−123. − 170. i)7-s + (149. + 108. i)8-s + (−205. − 129. i)9-s − 207. i·10-s + (371. + 151. i)11-s + (−99.1 − 274. i)12-s + (787. − 255. i)13-s + (450. − 620. i)14-s + (−496. + 733. i)15-s + (−23.4 + 72.1i)16-s + (−271. + 836. i)17-s + ⋯
L(s)  = 1  + (0.199 + 0.613i)2-s + (0.277 − 0.960i)3-s + (0.472 − 0.343i)4-s + (−0.966 − 0.313i)5-s + (0.644 − 0.0213i)6-s + (−0.952 − 1.31i)7-s + (0.826 + 0.600i)8-s + (−0.846 − 0.533i)9-s − 0.655i·10-s + (0.925 + 0.378i)11-s + (−0.198 − 0.549i)12-s + (1.29 − 0.419i)13-s + (0.614 − 0.845i)14-s + (−0.569 + 0.841i)15-s + (−0.0229 + 0.0704i)16-s + (−0.228 + 0.701i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.290 + 0.956i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.290 + 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $0.290 + 0.956i$
Analytic conductor: \(5.29266\)
Root analytic conductor: \(2.30057\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :5/2),\ 0.290 + 0.956i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.35151 - 1.00181i\)
\(L(\frac12)\) \(\approx\) \(1.35151 - 1.00181i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-4.32 + 14.9i)T \)
11 \( 1 + (-371. - 151. i)T \)
good2 \( 1 + (-1.12 - 3.46i)T + (-25.8 + 18.8i)T^{2} \)
5 \( 1 + (54.0 + 17.5i)T + (2.52e3 + 1.83e3i)T^{2} \)
7 \( 1 + (123. + 170. i)T + (-5.19e3 + 1.59e4i)T^{2} \)
13 \( 1 + (-787. + 255. i)T + (3.00e5 - 2.18e5i)T^{2} \)
17 \( 1 + (271. - 836. i)T + (-1.14e6 - 8.34e5i)T^{2} \)
19 \( 1 + (-68.7 + 94.5i)T + (-7.65e5 - 2.35e6i)T^{2} \)
23 \( 1 + 181. iT - 6.43e6T^{2} \)
29 \( 1 + (-2.73e3 + 1.98e3i)T + (6.33e6 - 1.95e7i)T^{2} \)
31 \( 1 + (-3.13e3 - 9.63e3i)T + (-2.31e7 + 1.68e7i)T^{2} \)
37 \( 1 + (-7.06e3 + 5.13e3i)T + (2.14e7 - 6.59e7i)T^{2} \)
41 \( 1 + (9.18e3 + 6.67e3i)T + (3.58e7 + 1.10e8i)T^{2} \)
43 \( 1 + 1.32e4iT - 1.47e8T^{2} \)
47 \( 1 + (5.65e3 - 7.78e3i)T + (-7.08e7 - 2.18e8i)T^{2} \)
53 \( 1 + (-1.81e4 + 5.88e3i)T + (3.38e8 - 2.45e8i)T^{2} \)
59 \( 1 + (-1.18e4 - 1.63e4i)T + (-2.20e8 + 6.79e8i)T^{2} \)
61 \( 1 + (-1.69e4 - 5.50e3i)T + (6.83e8 + 4.96e8i)T^{2} \)
67 \( 1 - 2.18e4T + 1.35e9T^{2} \)
71 \( 1 + (4.97e4 + 1.61e4i)T + (1.45e9 + 1.06e9i)T^{2} \)
73 \( 1 + (-2.26e3 - 3.12e3i)T + (-6.40e8 + 1.97e9i)T^{2} \)
79 \( 1 + (-1.72e4 + 5.60e3i)T + (2.48e9 - 1.80e9i)T^{2} \)
83 \( 1 + (4.03e3 - 1.24e4i)T + (-3.18e9 - 2.31e9i)T^{2} \)
89 \( 1 + 2.96e4iT - 5.58e9T^{2} \)
97 \( 1 + (1.76e3 + 5.44e3i)T + (-6.94e9 + 5.04e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.52687231336592621213252256061, −14.19322848919908336855655250447, −13.22508986493785865596562372542, −11.90427545103975580482628257931, −10.53690815931478530148578033278, −8.423796353217330255540280248207, −7.16598244792711068044361432966, −6.34177257872574465406573682591, −3.80982553775666754641009908463, −1.01307514881261496259201676264, 2.91492601891428558367189656468, 3.94763934394871909193091774970, 6.35590852449753357160177094186, 8.376488607339591931746220402233, 9.638789303005096961126179709659, 11.36727525608819550765270297485, 11.72960414000133036178979353973, 13.38003555842646224127910721161, 15.07898195249390517684381425836, 15.89904852677666953614081293286

Graph of the $Z$-function along the critical line