| L(s) = 1 | − 2.21i·5-s + (0.866 − 0.5i)7-s + (−0.0357 − 0.0206i)11-s + (3.60 − 0.167i)13-s + (1.18 + 2.05i)17-s + (3.42 − 1.97i)19-s + (3.23 − 5.60i)23-s + 0.0938·25-s + (−2.70 + 4.68i)29-s + 5.19i·31-s + (−1.10 − 1.91i)35-s + (9.80 + 5.66i)37-s + (−9.94 − 5.74i)41-s + (−0.735 − 1.27i)43-s + 2.95i·47-s + ⋯ |
| L(s) = 1 | − 0.990i·5-s + (0.327 − 0.188i)7-s + (−0.0107 − 0.00622i)11-s + (0.998 − 0.0463i)13-s + (0.288 + 0.499i)17-s + (0.786 − 0.454i)19-s + (0.675 − 1.16i)23-s + 0.0187·25-s + (−0.502 + 0.869i)29-s + 0.932i·31-s + (−0.187 − 0.324i)35-s + (1.61 + 0.930i)37-s + (−1.55 − 0.896i)41-s + (−0.112 − 0.194i)43-s + 0.431i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.550 + 0.834i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.550 + 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.147444066\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.147444066\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (-3.60 + 0.167i)T \) |
| good | 5 | \( 1 + 2.21iT - 5T^{2} \) |
| 11 | \( 1 + (0.0357 + 0.0206i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.18 - 2.05i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.42 + 1.97i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.23 + 5.60i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.70 - 4.68i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 5.19iT - 31T^{2} \) |
| 37 | \( 1 + (-9.80 - 5.66i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (9.94 + 5.74i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.735 + 1.27i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 2.95iT - 47T^{2} \) |
| 53 | \( 1 + 2.27T + 53T^{2} \) |
| 59 | \( 1 + (-6.55 + 3.78i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.386 + 0.670i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.33 + 0.772i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.51 + 2.02i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 9.00iT - 73T^{2} \) |
| 79 | \( 1 - 10.5T + 79T^{2} \) |
| 83 | \( 1 - 14.1iT - 83T^{2} \) |
| 89 | \( 1 + (-4.42 - 2.55i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (4.10 - 2.37i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.551956784722341469343807358310, −8.001951578852940976323327214403, −6.99596426240471645672973909791, −6.30498960236011166761706737273, −5.24216942483238150878074966787, −4.85754831190039602016787104283, −3.86102478882927466062480865094, −2.99020438975252012282706342289, −1.59476554263807352974093589387, −0.821861966547071599481817855983,
1.09887257209919745387393044564, 2.29775007003915917429523166223, 3.23631519431669077440864624999, 3.88216114284357997567319135831, 5.04245536226097847368549514305, 5.82859180998472072156610592222, 6.46323817150372698280225693158, 7.41900055907727293920333776246, 7.80725020698387511493150581439, 8.766055210218465655180726392696