| L(s) = 1 | − 3.14i·5-s + (0.866 + 0.5i)7-s + (3.33 − 1.92i)11-s + (1.38 + 3.32i)13-s + (−0.0971 + 0.168i)17-s + (5.33 + 3.07i)19-s + (4.01 + 6.94i)23-s − 4.90·25-s + (−1.35 − 2.35i)29-s + 8.51i·31-s + (1.57 − 2.72i)35-s + (3.10 − 1.79i)37-s + (3.44 − 1.99i)41-s + (−5.74 + 9.95i)43-s + 4.35i·47-s + ⋯ |
| L(s) = 1 | − 1.40i·5-s + (0.327 + 0.188i)7-s + (1.00 − 0.580i)11-s + (0.384 + 0.923i)13-s + (−0.0235 + 0.0408i)17-s + (1.22 + 0.706i)19-s + (0.836 + 1.44i)23-s − 0.981·25-s + (−0.252 − 0.437i)29-s + 1.52i·31-s + (0.266 − 0.460i)35-s + (0.511 − 0.295i)37-s + (0.538 − 0.311i)41-s + (−0.876 + 1.51i)43-s + 0.634i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.141i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.989 + 0.141i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.242870183\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.242870183\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + (-1.38 - 3.32i)T \) |
| good | 5 | \( 1 + 3.14iT - 5T^{2} \) |
| 11 | \( 1 + (-3.33 + 1.92i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.0971 - 0.168i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.33 - 3.07i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.01 - 6.94i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.35 + 2.35i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 8.51iT - 31T^{2} \) |
| 37 | \( 1 + (-3.10 + 1.79i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.44 + 1.99i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.74 - 9.95i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 4.35iT - 47T^{2} \) |
| 53 | \( 1 - 0.576T + 53T^{2} \) |
| 59 | \( 1 + (1.80 + 1.04i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.70 - 2.94i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.69 + 2.71i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.92 - 4.57i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 3.31iT - 73T^{2} \) |
| 79 | \( 1 + 8.98T + 79T^{2} \) |
| 83 | \( 1 + 7.66iT - 83T^{2} \) |
| 89 | \( 1 + (4.42 - 2.55i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.33 - 4.81i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.714964174075323107581032325181, −8.042163426759311503354950521975, −7.21563134988285551821101723357, −6.24627227884383944609314148943, −5.50469400353323069268144999860, −4.83692842755744534087183144424, −4.00837389509533188062857958993, −3.19916905125993516393158873821, −1.53309882914458696878732677052, −1.16790926057871053960622291598,
0.847337988019913847086982305967, 2.24034374935080939787102805375, 3.06115082831815296371044343173, 3.82768639505690434450177319138, 4.79520244474905358892425627025, 5.73188354676495501118624959444, 6.63694124501109282520162937190, 7.05366417356949787865108020458, 7.75423580668816341457687441870, 8.638932594880311374996899004329