| L(s)  = 1 | − 2.30i·5-s     + (0.866 + 0.5i)7-s         + (−1.21 + 0.701i)11-s     + (−1.57 − 3.24i)13-s         + (−2.96 + 5.13i)17-s     + (5.10 + 2.94i)19-s         + (2.00 + 3.46i)23-s     − 0.291·25-s         + (0.712 + 1.23i)29-s     + 6.67i·31-s         + (1.15 − 1.99i)35-s     + (2.42 − 1.39i)37-s         + (2.47 − 1.42i)41-s     + (5.47 − 9.47i)43-s         + 12.5i·47-s    + ⋯ | 
| L(s)  = 1 | − 1.02i·5-s     + (0.327 + 0.188i)7-s         + (−0.366 + 0.211i)11-s     + (−0.436 − 0.899i)13-s         + (−0.719 + 1.24i)17-s     + (1.17 + 0.676i)19-s         + (0.417 + 0.722i)23-s     − 0.0582·25-s         + (0.132 + 0.229i)29-s     + 1.19i·31-s         + (0.194 − 0.336i)35-s     + (0.397 − 0.229i)37-s         + (0.386 − 0.223i)41-s     + (0.834 − 1.44i)43-s         + 1.83i·47-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0848i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 + 0.0848i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(1.832868460\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.832868460\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 \) | 
|  | 3 | \( 1 \) | 
|  | 7 | \( 1 + (-0.866 - 0.5i)T \) | 
|  | 13 | \( 1 + (1.57 + 3.24i)T \) | 
| good | 5 | \( 1 + 2.30iT - 5T^{2} \) | 
|  | 11 | \( 1 + (1.21 - 0.701i)T + (5.5 - 9.52i)T^{2} \) | 
|  | 17 | \( 1 + (2.96 - 5.13i)T + (-8.5 - 14.7i)T^{2} \) | 
|  | 19 | \( 1 + (-5.10 - 2.94i)T + (9.5 + 16.4i)T^{2} \) | 
|  | 23 | \( 1 + (-2.00 - 3.46i)T + (-11.5 + 19.9i)T^{2} \) | 
|  | 29 | \( 1 + (-0.712 - 1.23i)T + (-14.5 + 25.1i)T^{2} \) | 
|  | 31 | \( 1 - 6.67iT - 31T^{2} \) | 
|  | 37 | \( 1 + (-2.42 + 1.39i)T + (18.5 - 32.0i)T^{2} \) | 
|  | 41 | \( 1 + (-2.47 + 1.42i)T + (20.5 - 35.5i)T^{2} \) | 
|  | 43 | \( 1 + (-5.47 + 9.47i)T + (-21.5 - 37.2i)T^{2} \) | 
|  | 47 | \( 1 - 12.5iT - 47T^{2} \) | 
|  | 53 | \( 1 - 5.14T + 53T^{2} \) | 
|  | 59 | \( 1 + (-9.08 - 5.24i)T + (29.5 + 51.0i)T^{2} \) | 
|  | 61 | \( 1 + (-5.72 + 9.91i)T + (-30.5 - 52.8i)T^{2} \) | 
|  | 67 | \( 1 + (-2.18 + 1.25i)T + (33.5 - 58.0i)T^{2} \) | 
|  | 71 | \( 1 + (11.9 + 6.87i)T + (35.5 + 61.4i)T^{2} \) | 
|  | 73 | \( 1 + 2.30iT - 73T^{2} \) | 
|  | 79 | \( 1 - 2.50T + 79T^{2} \) | 
|  | 83 | \( 1 + 18.0iT - 83T^{2} \) | 
|  | 89 | \( 1 + (-8.44 + 4.87i)T + (44.5 - 77.0i)T^{2} \) | 
|  | 97 | \( 1 + (2.06 + 1.19i)T + (48.5 + 84.0i)T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−8.797603286815609609026272291194, −7.81436039817637731336640915319, −7.44855625798252921466434489509, −6.22424198975215366917148868330, −5.40106800518176570185208073614, −4.98431039991796905687123243185, −4.02338156874057827066937508905, −3.05167526703688199297854271429, −1.87856190907627492600453289993, −0.899835538958450262017491475564, 
0.74870298641834132247384944525, 2.43092162030006610192790656090, 2.75970734906246451940207162600, 4.01224473249004059059234639091, 4.78724408887680170172954923229, 5.58987036227110575221454142596, 6.73599617935228280193844311310, 7.01295545355905263967317322292, 7.73979447922337763747868916247, 8.685068986792229289532746917798
