Properties

Label 2-3276-1.1-c1-0-18
Degree $2$
Conductor $3276$
Sign $-1$
Analytic cond. $26.1589$
Root an. cond. $5.11458$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.23·5-s + 7-s + 1.23·11-s + 13-s − 6.47·17-s + 2.47·19-s + 4.47·23-s + 5.47·25-s + 0.472·29-s − 3.23·35-s − 4.47·37-s − 0.763·41-s + 4·43-s + 5.70·47-s + 49-s − 10·53-s − 4.00·55-s − 4.76·59-s − 2.94·61-s − 3.23·65-s + 6.47·67-s − 7.70·71-s − 4.47·73-s + 1.23·77-s − 1.52·79-s − 7.23·83-s + 20.9·85-s + ⋯
L(s)  = 1  − 1.44·5-s + 0.377·7-s + 0.372·11-s + 0.277·13-s − 1.56·17-s + 0.567·19-s + 0.932·23-s + 1.09·25-s + 0.0876·29-s − 0.546·35-s − 0.735·37-s − 0.119·41-s + 0.609·43-s + 0.832·47-s + 0.142·49-s − 1.37·53-s − 0.539·55-s − 0.620·59-s − 0.376·61-s − 0.401·65-s + 0.790·67-s − 0.914·71-s − 0.523·73-s + 0.140·77-s − 0.171·79-s − 0.794·83-s + 2.27·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3276\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(26.1589\)
Root analytic conductor: \(5.11458\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3276,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 + 3.23T + 5T^{2} \)
11 \( 1 - 1.23T + 11T^{2} \)
17 \( 1 + 6.47T + 17T^{2} \)
19 \( 1 - 2.47T + 19T^{2} \)
23 \( 1 - 4.47T + 23T^{2} \)
29 \( 1 - 0.472T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 4.47T + 37T^{2} \)
41 \( 1 + 0.763T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 - 5.70T + 47T^{2} \)
53 \( 1 + 10T + 53T^{2} \)
59 \( 1 + 4.76T + 59T^{2} \)
61 \( 1 + 2.94T + 61T^{2} \)
67 \( 1 - 6.47T + 67T^{2} \)
71 \( 1 + 7.70T + 71T^{2} \)
73 \( 1 + 4.47T + 73T^{2} \)
79 \( 1 + 1.52T + 79T^{2} \)
83 \( 1 + 7.23T + 83T^{2} \)
89 \( 1 + 12.1T + 89T^{2} \)
97 \( 1 + 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.364828837452713215492537727074, −7.43444707441598201944660755023, −7.02124924228333819513922593357, −6.09632647639949358815922455380, −4.96828607233540435871214015072, −4.35053956777467132482456866170, −3.63907109143536877639932736802, −2.69521237164191251555075833936, −1.33521628267656554216921522928, 0, 1.33521628267656554216921522928, 2.69521237164191251555075833936, 3.63907109143536877639932736802, 4.35053956777467132482456866170, 4.96828607233540435871214015072, 6.09632647639949358815922455380, 7.02124924228333819513922593357, 7.43444707441598201944660755023, 8.364828837452713215492537727074

Graph of the $Z$-function along the critical line