L(s) = 1 | + (−0.766 + 0.642i)3-s + (0.173 + 0.984i)4-s + (−0.673 + 1.85i)5-s + (0.173 − 0.984i)9-s + (−0.766 − 0.642i)12-s + (−0.673 − 1.85i)15-s + (−0.939 + 0.342i)16-s + (−1.93 − 0.342i)20-s + (−1.70 + 0.300i)23-s + (−2.20 − 1.85i)25-s + (0.500 + 0.866i)27-s + (−0.266 − 1.50i)31-s + 36-s + (0.173 + 0.300i)37-s + (1.70 + 0.984i)45-s + ⋯ |
L(s) = 1 | + (−0.766 + 0.642i)3-s + (0.173 + 0.984i)4-s + (−0.673 + 1.85i)5-s + (0.173 − 0.984i)9-s + (−0.766 − 0.642i)12-s + (−0.673 − 1.85i)15-s + (−0.939 + 0.342i)16-s + (−1.93 − 0.342i)20-s + (−1.70 + 0.300i)23-s + (−2.20 − 1.85i)25-s + (0.500 + 0.866i)27-s + (−0.266 − 1.50i)31-s + 36-s + (0.173 + 0.300i)37-s + (1.70 + 0.984i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.396 + 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.396 + 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4141741119\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4141741119\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.766 - 0.642i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 5 | \( 1 + (0.673 - 1.85i)T + (-0.766 - 0.642i)T^{2} \) |
| 7 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 13 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (1.70 - 0.300i)T + (0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (0.266 + 1.50i)T + (-0.939 + 0.342i)T^{2} \) |
| 37 | \( 1 + (-0.173 - 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 43 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 47 | \( 1 + (-0.673 - 0.118i)T + (0.939 + 0.342i)T^{2} \) |
| 53 | \( 1 - 1.28iT - T^{2} \) |
| 59 | \( 1 + (0.439 - 1.20i)T + (-0.766 - 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 67 | \( 1 + (1.17 - 0.984i)T + (0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (-0.592 + 0.342i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 89 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-1.76 + 0.642i)T + (0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.495648896886032071416134327814, −8.463513630631696319323001484642, −7.43730051076813037369158896490, −7.37735689023851735278019200913, −6.22354924734362051816494541778, −5.92802653320564818552787770780, −4.27736987807645307424078805091, −3.98175038357704093492069605889, −3.12769073541937506830247325078, −2.34089851591561749872558152667,
0.28202531224940203087612249285, 1.31079925555514298866661564220, 2.06246410010373805515962438385, 3.90952031118968737506283365658, 4.73545157711655159260924214821, 5.27905137393718108484681144092, 5.88223317118208659174833851725, 6.72222024629403536965585664842, 7.62715773457759367506961474012, 8.285232498524436230619196719861