L(s) = 1 | + (−0.766 + 0.642i)3-s + (0.173 + 0.984i)4-s + (−0.673 + 1.85i)5-s + (0.173 − 0.984i)9-s + (−0.766 − 0.642i)12-s + (−0.673 − 1.85i)15-s + (−0.939 + 0.342i)16-s + (−1.93 − 0.342i)20-s + (−1.70 + 0.300i)23-s + (−2.20 − 1.85i)25-s + (0.500 + 0.866i)27-s + (−0.266 − 1.50i)31-s + 36-s + (0.173 + 0.300i)37-s + (1.70 + 0.984i)45-s + ⋯ |
L(s) = 1 | + (−0.766 + 0.642i)3-s + (0.173 + 0.984i)4-s + (−0.673 + 1.85i)5-s + (0.173 − 0.984i)9-s + (−0.766 − 0.642i)12-s + (−0.673 − 1.85i)15-s + (−0.939 + 0.342i)16-s + (−1.93 − 0.342i)20-s + (−1.70 + 0.300i)23-s + (−2.20 − 1.85i)25-s + (0.500 + 0.866i)27-s + (−0.266 − 1.50i)31-s + 36-s + (0.173 + 0.300i)37-s + (1.70 + 0.984i)45-s + ⋯ |
Λ(s)=(=(3267s/2ΓC(s)L(s)(−0.396+0.918i)Λ(1−s)
Λ(s)=(=(3267s/2ΓC(s)L(s)(−0.396+0.918i)Λ(1−s)
Degree: |
2 |
Conductor: |
3267
= 33⋅112
|
Sign: |
−0.396+0.918i
|
Analytic conductor: |
1.63044 |
Root analytic conductor: |
1.27688 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3267(848,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3267, ( :0), −0.396+0.918i)
|
Particular Values
L(21) |
≈ |
0.4141741119 |
L(21) |
≈ |
0.4141741119 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.766−0.642i)T |
| 11 | 1 |
good | 2 | 1+(−0.173−0.984i)T2 |
| 5 | 1+(0.673−1.85i)T+(−0.766−0.642i)T2 |
| 7 | 1+(−0.939−0.342i)T2 |
| 13 | 1+(0.173−0.984i)T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1+(−0.5−0.866i)T2 |
| 23 | 1+(1.70−0.300i)T+(0.939−0.342i)T2 |
| 29 | 1+(−0.173−0.984i)T2 |
| 31 | 1+(0.266+1.50i)T+(−0.939+0.342i)T2 |
| 37 | 1+(−0.173−0.300i)T+(−0.5+0.866i)T2 |
| 41 | 1+(−0.173+0.984i)T2 |
| 43 | 1+(0.766−0.642i)T2 |
| 47 | 1+(−0.673−0.118i)T+(0.939+0.342i)T2 |
| 53 | 1−1.28iT−T2 |
| 59 | 1+(0.439−1.20i)T+(−0.766−0.642i)T2 |
| 61 | 1+(−0.939−0.342i)T2 |
| 67 | 1+(1.17−0.984i)T+(0.173−0.984i)T2 |
| 71 | 1+(−0.592+0.342i)T+(0.5−0.866i)T2 |
| 73 | 1+(−0.5−0.866i)T2 |
| 79 | 1+(0.173+0.984i)T2 |
| 83 | 1+(−0.173−0.984i)T2 |
| 89 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 97 | 1+(−1.76+0.642i)T+(0.766−0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.495648896886032071416134327814, −8.463513630631696319323001484642, −7.43730051076813037369158896490, −7.37735689023851735278019200913, −6.22354924734362051816494541778, −5.92802653320564818552787770780, −4.27736987807645307424078805091, −3.98175038357704093492069605889, −3.12769073541937506830247325078, −2.34089851591561749872558152667,
0.28202531224940203087612249285, 1.31079925555514298866661564220, 2.06246410010373805515962438385, 3.90952031118968737506283365658, 4.73545157711655159260924214821, 5.27905137393718108484681144092, 5.88223317118208659174833851725, 6.72222024629403536965585664842, 7.62715773457759367506961474012, 8.285232498524436230619196719861