L(s) = 1 | + (−0.809 − 0.587i)4-s + (0.304 − 0.418i)7-s + (1.83 + 0.596i)13-s + (0.309 + 0.951i)16-s + (−0.831 − 1.14i)19-s + (0.809 − 0.587i)25-s + (−0.492 + 0.159i)28-s + (−0.535 + 1.64i)31-s − 1.41i·43-s + (0.226 + 0.696i)49-s + (−1.13 − 1.56i)52-s + (1.34 − 0.437i)61-s + (0.309 − 0.951i)64-s + 1.73·67-s + (1.13 − 1.56i)73-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)4-s + (0.304 − 0.418i)7-s + (1.83 + 0.596i)13-s + (0.309 + 0.951i)16-s + (−0.831 − 1.14i)19-s + (0.809 − 0.587i)25-s + (−0.492 + 0.159i)28-s + (−0.535 + 1.64i)31-s − 1.41i·43-s + (0.226 + 0.696i)49-s + (−1.13 − 1.56i)52-s + (1.34 − 0.437i)61-s + (0.309 − 0.951i)64-s + 1.73·67-s + (1.13 − 1.56i)73-s + ⋯ |
Λ(s)=(=(3267s/2ΓC(s)L(s)(0.681+0.731i)Λ(1−s)
Λ(s)=(=(3267s/2ΓC(s)L(s)(0.681+0.731i)Λ(1−s)
Degree: |
2 |
Conductor: |
3267
= 33⋅112
|
Sign: |
0.681+0.731i
|
Analytic conductor: |
1.63044 |
Root analytic conductor: |
1.27688 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3267(838,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3267, ( :0), 0.681+0.731i)
|
Particular Values
L(21) |
≈ |
1.133699143 |
L(21) |
≈ |
1.133699143 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+(0.809+0.587i)T2 |
| 5 | 1+(−0.809+0.587i)T2 |
| 7 | 1+(−0.304+0.418i)T+(−0.309−0.951i)T2 |
| 13 | 1+(−1.83−0.596i)T+(0.809+0.587i)T2 |
| 17 | 1+(0.809−0.587i)T2 |
| 19 | 1+(0.831+1.14i)T+(−0.309+0.951i)T2 |
| 23 | 1+T2 |
| 29 | 1+(−0.309−0.951i)T2 |
| 31 | 1+(0.535−1.64i)T+(−0.809−0.587i)T2 |
| 37 | 1+(0.309+0.951i)T2 |
| 41 | 1+(−0.309+0.951i)T2 |
| 43 | 1+1.41iT−T2 |
| 47 | 1+(0.309−0.951i)T2 |
| 53 | 1+(−0.809−0.587i)T2 |
| 59 | 1+(0.309+0.951i)T2 |
| 61 | 1+(−1.34+0.437i)T+(0.809−0.587i)T2 |
| 67 | 1−1.73T+T2 |
| 71 | 1+(−0.809+0.587i)T2 |
| 73 | 1+(−1.13+1.56i)T+(−0.309−0.951i)T2 |
| 79 | 1+(1.83+0.596i)T+(0.809+0.587i)T2 |
| 83 | 1+(0.809−0.587i)T2 |
| 89 | 1+T2 |
| 97 | 1+(−0.309+0.951i)T+(−0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.600318455223118400348272185968, −8.437462614021968044226496234106, −7.04515517372000576502886756315, −6.51690755325409044029723532081, −5.65650055307991812059617099624, −4.80831694470678973350776581739, −4.16858829870369060677789181889, −3.37066188118227708094761357023, −1.89995998755732687185511280733, −0.886188653004514832453301012965,
1.16619913820001205251355152875, 2.51323951846356027015164846669, 3.68462016643140450619198518862, 3.99878968579795002560419198531, 5.18830002093268639229146036758, 5.79209469452651247114826755125, 6.61353958824165358962593857295, 7.74723202868378783724316144784, 8.300577029821686795597087425657, 8.696172754021391535641798082821