L(s) = 1 | + (−0.809 − 0.587i)4-s + (0.304 − 0.418i)7-s + (1.83 + 0.596i)13-s + (0.309 + 0.951i)16-s + (−0.831 − 1.14i)19-s + (0.809 − 0.587i)25-s + (−0.492 + 0.159i)28-s + (−0.535 + 1.64i)31-s − 1.41i·43-s + (0.226 + 0.696i)49-s + (−1.13 − 1.56i)52-s + (1.34 − 0.437i)61-s + (0.309 − 0.951i)64-s + 1.73·67-s + (1.13 − 1.56i)73-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)4-s + (0.304 − 0.418i)7-s + (1.83 + 0.596i)13-s + (0.309 + 0.951i)16-s + (−0.831 − 1.14i)19-s + (0.809 − 0.587i)25-s + (−0.492 + 0.159i)28-s + (−0.535 + 1.64i)31-s − 1.41i·43-s + (0.226 + 0.696i)49-s + (−1.13 − 1.56i)52-s + (1.34 − 0.437i)61-s + (0.309 − 0.951i)64-s + 1.73·67-s + (1.13 − 1.56i)73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.681 + 0.731i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.681 + 0.731i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.133699143\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.133699143\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 5 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 + (-0.304 + 0.418i)T + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (-1.83 - 0.596i)T + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (0.831 + 1.14i)T + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (0.535 - 1.64i)T + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + 1.41iT - T^{2} \) |
| 47 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-1.34 + 0.437i)T + (0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 - 1.73T + T^{2} \) |
| 71 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-1.13 + 1.56i)T + (-0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (1.83 + 0.596i)T + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.309 + 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.600318455223118400348272185968, −8.437462614021968044226496234106, −7.04515517372000576502886756315, −6.51690755325409044029723532081, −5.65650055307991812059617099624, −4.80831694470678973350776581739, −4.16858829870369060677789181889, −3.37066188118227708094761357023, −1.89995998755732687185511280733, −0.886188653004514832453301012965,
1.16619913820001205251355152875, 2.51323951846356027015164846669, 3.68462016643140450619198518862, 3.99878968579795002560419198531, 5.18830002093268639229146036758, 5.79209469452651247114826755125, 6.61353958824165358962593857295, 7.74723202868378783724316144784, 8.300577029821686795597087425657, 8.696172754021391535641798082821