L(s) = 1 | + 4-s + 1.93i·7-s + 0.517i·13-s + 16-s − 1.41i·19-s − 25-s + 1.93i·28-s + 1.73·31-s + 1.41i·43-s − 2.73·49-s + 0.517i·52-s + 1.41i·61-s + 64-s − 1.73·67-s + 0.517i·73-s + ⋯ |
L(s) = 1 | + 4-s + 1.93i·7-s + 0.517i·13-s + 16-s − 1.41i·19-s − 25-s + 1.93i·28-s + 1.73·31-s + 1.41i·43-s − 2.73·49-s + 0.517i·52-s + 1.41i·61-s + 64-s − 1.73·67-s + 0.517i·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.601430125\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.601430125\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 - T^{2} \) |
| 5 | \( 1 + T^{2} \) |
| 7 | \( 1 - 1.93iT - T^{2} \) |
| 13 | \( 1 - 0.517iT - T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + 1.41iT - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - 1.73T + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 1.41iT - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - 1.41iT - T^{2} \) |
| 67 | \( 1 + 1.73T + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - 0.517iT - T^{2} \) |
| 79 | \( 1 + 0.517iT - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.929265338401141616198084325052, −8.249450495780411953343866354730, −7.45777253098177644946224897216, −6.48780612808044916235831420806, −6.10000461034407803781073997851, −5.29381553457790105101882656502, −4.41526534156070664886655197547, −2.94873373982252916440742829324, −2.58563405145722755519026087337, −1.62842713776413164374217909733,
0.987091595782885604660525575453, 1.99624627511606155583601100987, 3.29401099533779911087651522055, 3.83425013407645239092474736472, 4.78494384024374958637999385871, 5.93224957270222222737158279360, 6.47896242437598672541613328868, 7.38100288563971429712876300100, 7.71506124318885082241445901818, 8.412970529283329585347392592814