L(s) = 1 | + 4-s + 1.93i·7-s + 0.517i·13-s + 16-s − 1.41i·19-s − 25-s + 1.93i·28-s + 1.73·31-s + 1.41i·43-s − 2.73·49-s + 0.517i·52-s + 1.41i·61-s + 64-s − 1.73·67-s + 0.517i·73-s + ⋯ |
L(s) = 1 | + 4-s + 1.93i·7-s + 0.517i·13-s + 16-s − 1.41i·19-s − 25-s + 1.93i·28-s + 1.73·31-s + 1.41i·43-s − 2.73·49-s + 0.517i·52-s + 1.41i·61-s + 64-s − 1.73·67-s + 0.517i·73-s + ⋯ |
Λ(s)=(=(3267s/2ΓC(s)L(s)(0.522−0.852i)Λ(1−s)
Λ(s)=(=(3267s/2ΓC(s)L(s)(0.522−0.852i)Λ(1−s)
Degree: |
2 |
Conductor: |
3267
= 33⋅112
|
Sign: |
0.522−0.852i
|
Analytic conductor: |
1.63044 |
Root analytic conductor: |
1.27688 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3267(2782,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3267, ( :0), 0.522−0.852i)
|
Particular Values
L(21) |
≈ |
1.601430125 |
L(21) |
≈ |
1.601430125 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1−T2 |
| 5 | 1+T2 |
| 7 | 1−1.93iT−T2 |
| 13 | 1−0.517iT−T2 |
| 17 | 1−T2 |
| 19 | 1+1.41iT−T2 |
| 23 | 1+T2 |
| 29 | 1−T2 |
| 31 | 1−1.73T+T2 |
| 37 | 1+T2 |
| 41 | 1−T2 |
| 43 | 1−1.41iT−T2 |
| 47 | 1+T2 |
| 53 | 1+T2 |
| 59 | 1+T2 |
| 61 | 1−1.41iT−T2 |
| 67 | 1+1.73T+T2 |
| 71 | 1+T2 |
| 73 | 1−0.517iT−T2 |
| 79 | 1+0.517iT−T2 |
| 83 | 1−T2 |
| 89 | 1+T2 |
| 97 | 1−T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.929265338401141616198084325052, −8.249450495780411953343866354730, −7.45777253098177644946224897216, −6.48780612808044916235831420806, −6.10000461034407803781073997851, −5.29381553457790105101882656502, −4.41526534156070664886655197547, −2.94873373982252916440742829324, −2.58563405145722755519026087337, −1.62842713776413164374217909733,
0.987091595782885604660525575453, 1.99624627511606155583601100987, 3.29401099533779911087651522055, 3.83425013407645239092474736472, 4.78494384024374958637999385871, 5.93224957270222222737158279360, 6.47896242437598672541613328868, 7.38100288563971429712876300100, 7.71506124318885082241445901818, 8.412970529283329585347392592814