Properties

Label 2-3264-1.1-c1-0-33
Degree $2$
Conductor $3264$
Sign $1$
Analytic cond. $26.0631$
Root an. cond. $5.10521$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s − 2·7-s + 9-s + 6·13-s + 4·15-s − 17-s − 4·19-s − 2·21-s + 6·23-s + 11·25-s + 27-s + 4·29-s − 6·31-s − 8·35-s + 4·37-s + 6·39-s − 10·41-s + 4·43-s + 4·45-s + 4·47-s − 3·49-s − 51-s + 2·53-s − 4·57-s − 12·59-s + 4·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s − 0.755·7-s + 1/3·9-s + 1.66·13-s + 1.03·15-s − 0.242·17-s − 0.917·19-s − 0.436·21-s + 1.25·23-s + 11/5·25-s + 0.192·27-s + 0.742·29-s − 1.07·31-s − 1.35·35-s + 0.657·37-s + 0.960·39-s − 1.56·41-s + 0.609·43-s + 0.596·45-s + 0.583·47-s − 3/7·49-s − 0.140·51-s + 0.274·53-s − 0.529·57-s − 1.56·59-s + 0.512·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3264\)    =    \(2^{6} \cdot 3 \cdot 17\)
Sign: $1$
Analytic conductor: \(26.0631\)
Root analytic conductor: \(5.10521\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3264,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.343104570\)
\(L(\frac12)\) \(\approx\) \(3.343104570\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
17 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 + 6 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.983248085672629732905501845925, −8.117318613601411731215025349799, −6.81173000092255075251437332159, −6.46249354410612141225423166895, −5.77904204714328784200418377249, −4.91585848792345990418783522770, −3.75890531283655162147766509504, −2.94610759542800375463162022317, −2.07543878259651085165424781495, −1.16529472267103972455357580300, 1.16529472267103972455357580300, 2.07543878259651085165424781495, 2.94610759542800375463162022317, 3.75890531283655162147766509504, 4.91585848792345990418783522770, 5.77904204714328784200418377249, 6.46249354410612141225423166895, 6.81173000092255075251437332159, 8.117318613601411731215025349799, 8.983248085672629732905501845925

Graph of the $Z$-function along the critical line