L(s) = 1 | − i·2-s + (−1 + i)3-s + 4-s + (1 + i)6-s + 2·7-s − 3i·8-s + i·9-s + (−1 + i)11-s + (−1 + i)12-s + (2 + 3i)13-s − 2i·14-s − 16-s + (1 − i)17-s + 18-s + (5 − 5i)19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (−0.577 + 0.577i)3-s + 0.5·4-s + (0.408 + 0.408i)6-s + 0.755·7-s − 1.06i·8-s + 0.333i·9-s + (−0.301 + 0.301i)11-s + (−0.288 + 0.288i)12-s + (0.554 + 0.832i)13-s − 0.534i·14-s − 0.250·16-s + (0.242 − 0.242i)17-s + 0.235·18-s + (1.14 − 1.14i)19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(0.966+0.256i)Λ(2−s)
Λ(s)=(=(325s/2ΓC(s+1/2)L(s)(0.966+0.256i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
0.966+0.256i
|
Analytic conductor: |
2.59513 |
Root analytic conductor: |
1.61094 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(307,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :1/2), 0.966+0.256i)
|
Particular Values
L(1) |
≈ |
1.39869−0.182557i |
L(21) |
≈ |
1.39869−0.182557i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+(−2−3i)T |
good | 2 | 1+iT−2T2 |
| 3 | 1+(1−i)T−3iT2 |
| 7 | 1−2T+7T2 |
| 11 | 1+(1−i)T−11iT2 |
| 17 | 1+(−1+i)T−17iT2 |
| 19 | 1+(−5+5i)T−19iT2 |
| 23 | 1+(−3−3i)T+23iT2 |
| 29 | 1−29T2 |
| 31 | 1+(−5−5i)T+31iT2 |
| 37 | 1+37T2 |
| 41 | 1+(7+7i)T+41iT2 |
| 43 | 1+(1+i)T+43iT2 |
| 47 | 1+6T+47T2 |
| 53 | 1+(5−5i)T−53iT2 |
| 59 | 1+(−7−7i)T+59iT2 |
| 61 | 1+14T+61T2 |
| 67 | 1−4iT−67T2 |
| 71 | 1+(−1−i)T+71iT2 |
| 73 | 1+10iT−73T2 |
| 79 | 1+2iT−79T2 |
| 83 | 1+6T+83T2 |
| 89 | 1+(5+5i)T+89iT2 |
| 97 | 1+2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.49877995026866319420390841576, −10.82669726838418579362701549665, −10.05127028613271994248561309330, −9.050008011406213315356624561879, −7.67109668290368276829886412309, −6.75376157360806958794585756715, −5.35802131020787838166673963893, −4.50679979538928923128421638146, −3.05605240781393840939190521912, −1.56913327172388475004175740625,
1.38698629632226783143308340965, 3.20387542892187851939078231485, 5.10467461181155124744900307917, 5.92458878441165171090142572011, 6.68892470576552616216444542324, 7.87155574364968762775767305140, 8.253305675688649284095761861164, 9.873443212325966159410298061836, 11.01293290014164402462558776367, 11.59263846417408964018128818610