L(s) = 1 | − 3.20i·2-s − 29.5i·3-s + 21.7·4-s − 94.8·6-s + 11.5i·7-s − 172. i·8-s − 632.·9-s − 596.·11-s − 642. i·12-s + 169i·13-s + 37.1·14-s + 142.·16-s − 2.09e3i·17-s + 2.02e3i·18-s − 35.4·19-s + ⋯ |
L(s) = 1 | − 0.566i·2-s − 1.89i·3-s + 0.678·4-s − 1.07·6-s + 0.0892i·7-s − 0.951i·8-s − 2.60·9-s − 1.48·11-s − 1.28i·12-s + 0.277i·13-s + 0.0506·14-s + 0.139·16-s − 1.75i·17-s + 1.47i·18-s − 0.0225·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(0.447−0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), 0.447−0.894i)
|
Particular Values
L(3) |
≈ |
0.7659285357 |
L(21) |
≈ |
0.7659285357 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1−169iT |
good | 2 | 1+3.20iT−32T2 |
| 3 | 1+29.5iT−243T2 |
| 7 | 1−11.5iT−1.68e4T2 |
| 11 | 1+596.T+1.61e5T2 |
| 17 | 1+2.09e3iT−1.41e6T2 |
| 19 | 1+35.4T+2.47e6T2 |
| 23 | 1−2.78e3iT−6.43e6T2 |
| 29 | 1−370.T+2.05e7T2 |
| 31 | 1−5.05e3T+2.86e7T2 |
| 37 | 1+4.12e3iT−6.93e7T2 |
| 41 | 1+1.81e4T+1.15e8T2 |
| 43 | 1+7.90e3iT−1.47e8T2 |
| 47 | 1−1.31e4iT−2.29e8T2 |
| 53 | 1−3.82e4iT−4.18e8T2 |
| 59 | 1+1.78e4T+7.14e8T2 |
| 61 | 1−7.39e3T+8.44e8T2 |
| 67 | 1−2.33e4iT−1.35e9T2 |
| 71 | 1+3.31e4T+1.80e9T2 |
| 73 | 1+1.08e4iT−2.07e9T2 |
| 79 | 1−1.77e4T+3.07e9T2 |
| 83 | 1+8.42e4iT−3.93e9T2 |
| 89 | 1−4.64e4T+5.58e9T2 |
| 97 | 1+1.54e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.26464985074492341994357727996, −8.931060139785972302820022867597, −7.59707640601827919319344262269, −7.36955737541825208652762611246, −6.28396249907723201603327899088, −5.27461904287277902549120057686, −2.98992942803779082318067691672, −2.41218186200037421504477115783, −1.28991080725586359721882999750, −0.18475467836405768476338680412,
2.43072010846673202855284819410, 3.47725811711752918898264119339, 4.75152295609782881031287881609, 5.51719684595395905630295848273, 6.46913417080508007443984357826, 8.162413412389258628832969670734, 8.453174926825239788858410364217, 10.06799090164732486957934654880, 10.43600209282465574285677905962, 11.10012890585024235559798136618