L(s) = 1 | − 7.28i·2-s − 14.9i·3-s − 21.0·4-s − 109.·6-s − 135. i·7-s − 79.9i·8-s + 18.1·9-s + 191.·11-s + 315. i·12-s + 169i·13-s − 985.·14-s − 1.25e3·16-s + 874. i·17-s − 132. i·18-s − 1.99e3·19-s + ⋯ |
L(s) = 1 | − 1.28i·2-s − 0.961i·3-s − 0.656·4-s − 1.23·6-s − 1.04i·7-s − 0.441i·8-s + 0.0748·9-s + 0.476·11-s + 0.631i·12-s + 0.277i·13-s − 1.34·14-s − 1.22·16-s + 0.733i·17-s − 0.0963i·18-s − 1.26·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(0.447−0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), 0.447−0.894i)
|
Particular Values
L(3) |
≈ |
1.115833971 |
L(21) |
≈ |
1.115833971 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1−169iT |
good | 2 | 1+7.28iT−32T2 |
| 3 | 1+14.9iT−243T2 |
| 7 | 1+135.iT−1.68e4T2 |
| 11 | 1−191.T+1.61e5T2 |
| 17 | 1−874.iT−1.41e6T2 |
| 19 | 1+1.99e3T+2.47e6T2 |
| 23 | 1+2.09e3iT−6.43e6T2 |
| 29 | 1−46.3T+2.05e7T2 |
| 31 | 1+9.45e3T+2.86e7T2 |
| 37 | 1−3.37e3iT−6.93e7T2 |
| 41 | 1+1.05e4T+1.15e8T2 |
| 43 | 1−4.05e3iT−1.47e8T2 |
| 47 | 1−1.70e4iT−2.29e8T2 |
| 53 | 1+2.39e4iT−4.18e8T2 |
| 59 | 1−1.01e4T+7.14e8T2 |
| 61 | 1+2.74e4T+8.44e8T2 |
| 67 | 1−317.iT−1.35e9T2 |
| 71 | 1−3.96e4T+1.80e9T2 |
| 73 | 1−4.76e3iT−2.07e9T2 |
| 79 | 1−7.45e4T+3.07e9T2 |
| 83 | 1+1.42e4iT−3.93e9T2 |
| 89 | 1−1.32e5T+5.58e9T2 |
| 97 | 1+1.93e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39187597998844865574326374157, −9.308899570519870320329400091452, −8.117229863790768616422167241696, −6.98024535387071298113436536491, −6.41623335791145311470242217024, −4.42764840796111830302177476609, −3.63776908646797401063906132089, −2.11760821420929738348589662071, −1.37378004706762973458519324724, −0.28018021364497598991012094497,
2.11426362595565290552993169300, 3.70176720004124815817578196677, 4.94839816640159478449104223288, 5.62020375057735067447250347273, 6.67536926932661694379475342111, 7.65650558381964430119226894127, 8.873021483246194207374195342656, 9.232717286880752918463405580491, 10.50152883012026997341774828924, 11.42758280625037475533058061364