L(s) = 1 | − 5.83i·2-s − 12.7i·3-s − 2.07·4-s − 74.5·6-s − 231. i·7-s − 174. i·8-s + 80.0·9-s − 223.·11-s + 26.5i·12-s + 169i·13-s − 1.35e3·14-s − 1.08e3·16-s − 1.32e3i·17-s − 467. i·18-s + 1.48e3·19-s + ⋯ |
L(s) = 1 | − 1.03i·2-s − 0.818i·3-s − 0.0649·4-s − 0.845·6-s − 1.78i·7-s − 0.964i·8-s + 0.329·9-s − 0.556·11-s + 0.0531i·12-s + 0.277i·13-s − 1.84·14-s − 1.06·16-s − 1.11i·17-s − 0.339i·18-s + 0.940·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(−0.447−0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), −0.447−0.894i)
|
Particular Values
L(3) |
≈ |
2.173450762 |
L(21) |
≈ |
2.173450762 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1−169iT |
good | 2 | 1+5.83iT−32T2 |
| 3 | 1+12.7iT−243T2 |
| 7 | 1+231.iT−1.68e4T2 |
| 11 | 1+223.T+1.61e5T2 |
| 17 | 1+1.32e3iT−1.41e6T2 |
| 19 | 1−1.48e3T+2.47e6T2 |
| 23 | 1+1.32e3iT−6.43e6T2 |
| 29 | 1+1.67e3T+2.05e7T2 |
| 31 | 1−8.48e3T+2.86e7T2 |
| 37 | 1−4.10e3iT−6.93e7T2 |
| 41 | 1+1.00e4T+1.15e8T2 |
| 43 | 1−3.44e3iT−1.47e8T2 |
| 47 | 1+1.64e4iT−2.29e8T2 |
| 53 | 1−1.69e4iT−4.18e8T2 |
| 59 | 1+1.19e4T+7.14e8T2 |
| 61 | 1−3.74e4T+8.44e8T2 |
| 67 | 1+7.25e3iT−1.35e9T2 |
| 71 | 1−5.20e4T+1.80e9T2 |
| 73 | 1−8.56e4iT−2.07e9T2 |
| 79 | 1−4.51e4T+3.07e9T2 |
| 83 | 1−1.14e5iT−3.93e9T2 |
| 89 | 1+2.26e4T+5.58e9T2 |
| 97 | 1−1.07e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.17993917496046678647235101385, −9.763426304902826856961786413279, −8.014167087783643786835093898706, −7.12822444823799503551366044239, −6.68880427713110027456291027379, −4.77003152287796400863329551455, −3.70814463369224347448169985725, −2.52127245616668615014073243234, −1.20294377828739099221631865920, −0.60258683422826490855403637497,
1.97651444843720018961651315817, 3.21712749742906457199113994717, 4.87355179432097574293405335919, 5.54697395640492290602952573348, 6.37309593066170997158860837479, 7.69408060288041963285126579369, 8.485965986655146697927157017750, 9.361469959881390226977711409513, 10.32587630083256019287308998931, 11.39770328462428093684051164946