Properties

Label 2-325-5.4-c5-0-82
Degree $2$
Conductor $325$
Sign $-0.447 - 0.894i$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.83i·2-s − 12.7i·3-s − 2.07·4-s − 74.5·6-s − 231. i·7-s − 174. i·8-s + 80.0·9-s − 223.·11-s + 26.5i·12-s + 169i·13-s − 1.35e3·14-s − 1.08e3·16-s − 1.32e3i·17-s − 467. i·18-s + 1.48e3·19-s + ⋯
L(s)  = 1  − 1.03i·2-s − 0.818i·3-s − 0.0649·4-s − 0.845·6-s − 1.78i·7-s − 0.964i·8-s + 0.329·9-s − 0.556·11-s + 0.0531i·12-s + 0.277i·13-s − 1.84·14-s − 1.06·16-s − 1.11i·17-s − 0.339i·18-s + 0.940·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{325} (274, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.173450762\)
\(L(\frac12)\) \(\approx\) \(2.173450762\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - 169iT \)
good2 \( 1 + 5.83iT - 32T^{2} \)
3 \( 1 + 12.7iT - 243T^{2} \)
7 \( 1 + 231. iT - 1.68e4T^{2} \)
11 \( 1 + 223.T + 1.61e5T^{2} \)
17 \( 1 + 1.32e3iT - 1.41e6T^{2} \)
19 \( 1 - 1.48e3T + 2.47e6T^{2} \)
23 \( 1 + 1.32e3iT - 6.43e6T^{2} \)
29 \( 1 + 1.67e3T + 2.05e7T^{2} \)
31 \( 1 - 8.48e3T + 2.86e7T^{2} \)
37 \( 1 - 4.10e3iT - 6.93e7T^{2} \)
41 \( 1 + 1.00e4T + 1.15e8T^{2} \)
43 \( 1 - 3.44e3iT - 1.47e8T^{2} \)
47 \( 1 + 1.64e4iT - 2.29e8T^{2} \)
53 \( 1 - 1.69e4iT - 4.18e8T^{2} \)
59 \( 1 + 1.19e4T + 7.14e8T^{2} \)
61 \( 1 - 3.74e4T + 8.44e8T^{2} \)
67 \( 1 + 7.25e3iT - 1.35e9T^{2} \)
71 \( 1 - 5.20e4T + 1.80e9T^{2} \)
73 \( 1 - 8.56e4iT - 2.07e9T^{2} \)
79 \( 1 - 4.51e4T + 3.07e9T^{2} \)
83 \( 1 - 1.14e5iT - 3.93e9T^{2} \)
89 \( 1 + 2.26e4T + 5.58e9T^{2} \)
97 \( 1 - 1.07e5iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.17993917496046678647235101385, −9.763426304902826856961786413279, −8.014167087783643786835093898706, −7.12822444823799503551366044239, −6.68880427713110027456291027379, −4.77003152287796400863329551455, −3.70814463369224347448169985725, −2.52127245616668615014073243234, −1.20294377828739099221631865920, −0.60258683422826490855403637497, 1.97651444843720018961651315817, 3.21712749742906457199113994717, 4.87355179432097574293405335919, 5.54697395640492290602952573348, 6.37309593066170997158860837479, 7.69408060288041963285126579369, 8.485965986655146697927157017750, 9.361469959881390226977711409513, 10.32587630083256019287308998931, 11.39770328462428093684051164946

Graph of the $Z$-function along the critical line