L(s) = 1 | + 0.979i·2-s − 20.7i·3-s + 31.0·4-s + 20.3·6-s − 233. i·7-s + 61.7i·8-s − 188.·9-s + 621.·11-s − 645. i·12-s − 169i·13-s + 229.·14-s + 932.·16-s + 287. i·17-s − 185. i·18-s + 2.63e3·19-s + ⋯ |
L(s) = 1 | + 0.173i·2-s − 1.33i·3-s + 0.970·4-s + 0.230·6-s − 1.80i·7-s + 0.341i·8-s − 0.777·9-s + 1.54·11-s − 1.29i·12-s − 0.277i·13-s + 0.312·14-s + 0.910·16-s + 0.241i·17-s − 0.134i·18-s + 1.67·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(−0.447+0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), −0.447+0.894i)
|
Particular Values
L(3) |
≈ |
3.296709505 |
L(21) |
≈ |
3.296709505 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+169iT |
good | 2 | 1−0.979iT−32T2 |
| 3 | 1+20.7iT−243T2 |
| 7 | 1+233.iT−1.68e4T2 |
| 11 | 1−621.T+1.61e5T2 |
| 17 | 1−287.iT−1.41e6T2 |
| 19 | 1−2.63e3T+2.47e6T2 |
| 23 | 1+2.16e3iT−6.43e6T2 |
| 29 | 1+2.47e3T+2.05e7T2 |
| 31 | 1−7.14e3T+2.86e7T2 |
| 37 | 1−2.72e3iT−6.93e7T2 |
| 41 | 1−6.10e3T+1.15e8T2 |
| 43 | 1−2.66e3iT−1.47e8T2 |
| 47 | 1−2.96e4iT−2.29e8T2 |
| 53 | 1−1.17e4iT−4.18e8T2 |
| 59 | 1+2.86e4T+7.14e8T2 |
| 61 | 1−3.05e4T+8.44e8T2 |
| 67 | 1−2.21e4iT−1.35e9T2 |
| 71 | 1+6.24e4T+1.80e9T2 |
| 73 | 1+4.05e4iT−2.07e9T2 |
| 79 | 1−1.89e3T+3.07e9T2 |
| 83 | 1−6.63e3iT−3.93e9T2 |
| 89 | 1+1.39e5T+5.58e9T2 |
| 97 | 1−5.17e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.66291933283943845715751527035, −9.635434092614960902069930074413, −8.041822632914343321998881232948, −7.40166582199878225720261890233, −6.77658661788774618546610641965, −6.09369214696144003248485699046, −4.26386671876544906782270772070, −2.98492849191074524342747583336, −1.33855443233139415546544713138, −0.995725041551171598062425769368,
1.55174508312849642334074035703, 2.86838968975088413434905600381, 3.78133814753018525322969028379, 5.20749665453848066017032494680, 5.97502435262321941565315612826, 7.12768673117038360233446024931, 8.616230365670838013039490768157, 9.452113743394712015930586541737, 9.907777083612065547924707188597, 11.42933116723221701689425382394