Properties

Label 2-325-5.4-c5-0-72
Degree $2$
Conductor $325$
Sign $0.447 + 0.894i$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.23i·2-s − 11.6i·3-s − 35.8·4-s + 95.8·6-s − 195. i·7-s − 31.9i·8-s + 107.·9-s + 64.5·11-s + 417. i·12-s − 169i·13-s + 1.60e3·14-s − 885.·16-s + 426. i·17-s + 886. i·18-s + 959.·19-s + ⋯
L(s)  = 1  + 1.45i·2-s − 0.746i·3-s − 1.12·4-s + 1.08·6-s − 1.50i·7-s − 0.176i·8-s + 0.442·9-s + 0.160·11-s + 0.836i·12-s − 0.277i·13-s + 2.19·14-s − 0.864·16-s + 0.357i·17-s + 0.644i·18-s + 0.609·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{325} (274, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.288071940\)
\(L(\frac12)\) \(\approx\) \(1.288071940\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 + 169iT \)
good2 \( 1 - 8.23iT - 32T^{2} \)
3 \( 1 + 11.6iT - 243T^{2} \)
7 \( 1 + 195. iT - 1.68e4T^{2} \)
11 \( 1 - 64.5T + 1.61e5T^{2} \)
17 \( 1 - 426. iT - 1.41e6T^{2} \)
19 \( 1 - 959.T + 2.47e6T^{2} \)
23 \( 1 - 499. iT - 6.43e6T^{2} \)
29 \( 1 + 1.28e3T + 2.05e7T^{2} \)
31 \( 1 + 6.73e3T + 2.86e7T^{2} \)
37 \( 1 + 6.21e3iT - 6.93e7T^{2} \)
41 \( 1 + 6.49e3T + 1.15e8T^{2} \)
43 \( 1 - 1.56e4iT - 1.47e8T^{2} \)
47 \( 1 + 6.29e3iT - 2.29e8T^{2} \)
53 \( 1 + 4.03e4iT - 4.18e8T^{2} \)
59 \( 1 + 2.56e4T + 7.14e8T^{2} \)
61 \( 1 - 2.41e4T + 8.44e8T^{2} \)
67 \( 1 + 3.91e4iT - 1.35e9T^{2} \)
71 \( 1 + 3.26e4T + 1.80e9T^{2} \)
73 \( 1 + 1.45e4iT - 2.07e9T^{2} \)
79 \( 1 + 7.90e4T + 3.07e9T^{2} \)
83 \( 1 + 1.02e5iT - 3.93e9T^{2} \)
89 \( 1 - 4.81e4T + 5.58e9T^{2} \)
97 \( 1 - 7.33e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.50664813505657075611510300830, −9.467936666385442479415893418167, −8.180687562170295818571829472961, −7.43468974872750279001660989422, −7.00195435856139709439648558374, −6.05107153719232471121279053808, −4.83491302887465145350715053809, −3.70807636165936620376841431572, −1.64530475903753231304915022638, −0.33727142883327324018425899725, 1.43612129908459935773676515898, 2.53193075464804179745251566112, 3.54070962695427092005116606982, 4.62198387361713740041410107573, 5.65159343388496543369243151133, 7.12321734301169355654095133457, 8.775002564156947598188992787146, 9.324518292813121001400524569104, 10.06638045767113916921674940028, 10.99224801499722497449852765273

Graph of the $Z$-function along the critical line