L(s) = 1 | + 8.23i·2-s − 11.6i·3-s − 35.8·4-s + 95.8·6-s − 195. i·7-s − 31.9i·8-s + 107.·9-s + 64.5·11-s + 417. i·12-s − 169i·13-s + 1.60e3·14-s − 885.·16-s + 426. i·17-s + 886. i·18-s + 959.·19-s + ⋯ |
L(s) = 1 | + 1.45i·2-s − 0.746i·3-s − 1.12·4-s + 1.08·6-s − 1.50i·7-s − 0.176i·8-s + 0.442·9-s + 0.160·11-s + 0.836i·12-s − 0.277i·13-s + 2.19·14-s − 0.864·16-s + 0.357i·17-s + 0.644i·18-s + 0.609·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(0.447+0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), 0.447+0.894i)
|
Particular Values
L(3) |
≈ |
1.288071940 |
L(21) |
≈ |
1.288071940 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+169iT |
good | 2 | 1−8.23iT−32T2 |
| 3 | 1+11.6iT−243T2 |
| 7 | 1+195.iT−1.68e4T2 |
| 11 | 1−64.5T+1.61e5T2 |
| 17 | 1−426.iT−1.41e6T2 |
| 19 | 1−959.T+2.47e6T2 |
| 23 | 1−499.iT−6.43e6T2 |
| 29 | 1+1.28e3T+2.05e7T2 |
| 31 | 1+6.73e3T+2.86e7T2 |
| 37 | 1+6.21e3iT−6.93e7T2 |
| 41 | 1+6.49e3T+1.15e8T2 |
| 43 | 1−1.56e4iT−1.47e8T2 |
| 47 | 1+6.29e3iT−2.29e8T2 |
| 53 | 1+4.03e4iT−4.18e8T2 |
| 59 | 1+2.56e4T+7.14e8T2 |
| 61 | 1−2.41e4T+8.44e8T2 |
| 67 | 1+3.91e4iT−1.35e9T2 |
| 71 | 1+3.26e4T+1.80e9T2 |
| 73 | 1+1.45e4iT−2.07e9T2 |
| 79 | 1+7.90e4T+3.07e9T2 |
| 83 | 1+1.02e5iT−3.93e9T2 |
| 89 | 1−4.81e4T+5.58e9T2 |
| 97 | 1−7.33e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.50664813505657075611510300830, −9.467936666385442479415893418167, −8.180687562170295818571829472961, −7.43468974872750279001660989422, −7.00195435856139709439648558374, −6.05107153719232471121279053808, −4.83491302887465145350715053809, −3.70807636165936620376841431572, −1.64530475903753231304915022638, −0.33727142883327324018425899725,
1.43612129908459935773676515898, 2.53193075464804179745251566112, 3.54070962695427092005116606982, 4.62198387361713740041410107573, 5.65159343388496543369243151133, 7.12321734301169355654095133457, 8.775002564156947598188992787146, 9.324518292813121001400524569104, 10.06638045767113916921674940028, 10.99224801499722497449852765273