L(s) = 1 | + 6.07i·2-s − 25.6i·3-s − 4.94·4-s + 155.·6-s + 137. i·7-s + 164. i·8-s − 413.·9-s + 169.·11-s + 126. i·12-s − 169i·13-s − 834.·14-s − 1.15e3·16-s − 487. i·17-s − 2.51e3i·18-s − 2.38e3·19-s + ⋯ |
L(s) = 1 | + 1.07i·2-s − 1.64i·3-s − 0.154·4-s + 1.76·6-s + 1.05i·7-s + 0.908i·8-s − 1.70·9-s + 0.421·11-s + 0.254i·12-s − 0.277i·13-s − 1.13·14-s − 1.13·16-s − 0.408i·17-s − 1.82i·18-s − 1.51·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(−0.447+0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), −0.447+0.894i)
|
Particular Values
L(3) |
≈ |
0.8343181178 |
L(21) |
≈ |
0.8343181178 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+169iT |
good | 2 | 1−6.07iT−32T2 |
| 3 | 1+25.6iT−243T2 |
| 7 | 1−137.iT−1.68e4T2 |
| 11 | 1−169.T+1.61e5T2 |
| 17 | 1+487.iT−1.41e6T2 |
| 19 | 1+2.38e3T+2.47e6T2 |
| 23 | 1+4.14e3iT−6.43e6T2 |
| 29 | 1−4.57e3T+2.05e7T2 |
| 31 | 1+2.95e3T+2.86e7T2 |
| 37 | 1−5.73e3iT−6.93e7T2 |
| 41 | 1+1.70e3T+1.15e8T2 |
| 43 | 1+1.09e4iT−1.47e8T2 |
| 47 | 1+7.91e3iT−2.29e8T2 |
| 53 | 1+2.64e4iT−4.18e8T2 |
| 59 | 1+1.12e4T+7.14e8T2 |
| 61 | 1+4.02e4T+8.44e8T2 |
| 67 | 1+6.48e4iT−1.35e9T2 |
| 71 | 1+4.70e4T+1.80e9T2 |
| 73 | 1+4.27e4iT−2.07e9T2 |
| 79 | 1+9.00e4T+3.07e9T2 |
| 83 | 1−1.64e4iT−3.93e9T2 |
| 89 | 1−3.56e4T+5.58e9T2 |
| 97 | 1+1.21e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.63629028761202070187271341357, −8.776387954484754840817112145412, −8.439210623721892381742409479095, −7.42874489963799323343533642504, −6.45108318449258411226025877962, −6.18170812831406850587190191681, −4.91778359903567618563532810606, −2.66653389151328845499909775463, −1.87515480593145921068027818920, −0.20320156896442999409901519302,
1.41823243721137462808196812323, 2.99144136971711744263983233692, 4.01848971009343847533116733737, 4.38928529926288370143696484975, 6.00034906093732428536283742014, 7.26961981637941221000800025739, 8.777312801857995170595357600103, 9.621421253475044928351954759514, 10.33886649888557775465129395205, 10.87874385118669052686812728114