L(s) = 1 | − 2.89i·2-s − 3.45i·3-s + 23.6·4-s − 9.99·6-s + 148. i·7-s − 160. i·8-s + 231.·9-s − 712.·11-s − 81.7i·12-s + 169i·13-s + 428.·14-s + 290.·16-s + 1.13e3i·17-s − 668. i·18-s − 1.40e3·19-s + ⋯ |
L(s) = 1 | − 0.511i·2-s − 0.221i·3-s + 0.738·4-s − 0.113·6-s + 1.14i·7-s − 0.888i·8-s + 0.950·9-s − 1.77·11-s − 0.163i·12-s + 0.277i·13-s + 0.584·14-s + 0.284·16-s + 0.949i·17-s − 0.486i·18-s − 0.889·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(−0.447−0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), −0.447−0.894i)
|
Particular Values
L(3) |
≈ |
0.7359125028 |
L(21) |
≈ |
0.7359125028 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1−169iT |
good | 2 | 1+2.89iT−32T2 |
| 3 | 1+3.45iT−243T2 |
| 7 | 1−148.iT−1.68e4T2 |
| 11 | 1+712.T+1.61e5T2 |
| 17 | 1−1.13e3iT−1.41e6T2 |
| 19 | 1+1.40e3T+2.47e6T2 |
| 23 | 1−897.iT−6.43e6T2 |
| 29 | 1+3.23e3T+2.05e7T2 |
| 31 | 1+7.97e3T+2.86e7T2 |
| 37 | 1+4.97e3iT−6.93e7T2 |
| 41 | 1+1.55e4T+1.15e8T2 |
| 43 | 1+2.30e3iT−1.47e8T2 |
| 47 | 1−7.60e3iT−2.29e8T2 |
| 53 | 1+1.41e4iT−4.18e8T2 |
| 59 | 1+4.98e4T+7.14e8T2 |
| 61 | 1+2.51e3T+8.44e8T2 |
| 67 | 1−3.85e4iT−1.35e9T2 |
| 71 | 1−6.80e4T+1.80e9T2 |
| 73 | 1+2.13e4iT−2.07e9T2 |
| 79 | 1+3.98e3T+3.07e9T2 |
| 83 | 1+1.38e4iT−3.93e9T2 |
| 89 | 1+8.92e4T+5.58e9T2 |
| 97 | 1−1.47e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.94307231824655215935111506083, −10.42090738740085153348332543837, −9.368542857421231667108198194735, −8.154552571186677808607664819490, −7.29704627487840507181404034676, −6.20029091804524294991739569841, −5.22660032675330831977259968577, −3.69371101474690230104215724911, −2.37580094412295084864019564854, −1.74202425904293740801679326167,
0.16306908020263547960215966687, 1.83509203596215331450287927992, 3.15603081753176675287243664753, 4.57051091219701523062830980597, 5.51178108220517065197003432970, 6.88779430140820356208103648068, 7.42301633187027906749652171299, 8.222496831202450606822491048662, 9.761041995205028206277629860463, 10.64277100467776110643572678749