Properties

Label 2-325-5.4-c5-0-7
Degree $2$
Conductor $325$
Sign $-0.447 - 0.894i$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.89i·2-s − 3.45i·3-s + 23.6·4-s − 9.99·6-s + 148. i·7-s − 160. i·8-s + 231.·9-s − 712.·11-s − 81.7i·12-s + 169i·13-s + 428.·14-s + 290.·16-s + 1.13e3i·17-s − 668. i·18-s − 1.40e3·19-s + ⋯
L(s)  = 1  − 0.511i·2-s − 0.221i·3-s + 0.738·4-s − 0.113·6-s + 1.14i·7-s − 0.888i·8-s + 0.950·9-s − 1.77·11-s − 0.163i·12-s + 0.277i·13-s + 0.584·14-s + 0.284·16-s + 0.949i·17-s − 0.486i·18-s − 0.889·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{325} (274, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.7359125028\)
\(L(\frac12)\) \(\approx\) \(0.7359125028\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - 169iT \)
good2 \( 1 + 2.89iT - 32T^{2} \)
3 \( 1 + 3.45iT - 243T^{2} \)
7 \( 1 - 148. iT - 1.68e4T^{2} \)
11 \( 1 + 712.T + 1.61e5T^{2} \)
17 \( 1 - 1.13e3iT - 1.41e6T^{2} \)
19 \( 1 + 1.40e3T + 2.47e6T^{2} \)
23 \( 1 - 897. iT - 6.43e6T^{2} \)
29 \( 1 + 3.23e3T + 2.05e7T^{2} \)
31 \( 1 + 7.97e3T + 2.86e7T^{2} \)
37 \( 1 + 4.97e3iT - 6.93e7T^{2} \)
41 \( 1 + 1.55e4T + 1.15e8T^{2} \)
43 \( 1 + 2.30e3iT - 1.47e8T^{2} \)
47 \( 1 - 7.60e3iT - 2.29e8T^{2} \)
53 \( 1 + 1.41e4iT - 4.18e8T^{2} \)
59 \( 1 + 4.98e4T + 7.14e8T^{2} \)
61 \( 1 + 2.51e3T + 8.44e8T^{2} \)
67 \( 1 - 3.85e4iT - 1.35e9T^{2} \)
71 \( 1 - 6.80e4T + 1.80e9T^{2} \)
73 \( 1 + 2.13e4iT - 2.07e9T^{2} \)
79 \( 1 + 3.98e3T + 3.07e9T^{2} \)
83 \( 1 + 1.38e4iT - 3.93e9T^{2} \)
89 \( 1 + 8.92e4T + 5.58e9T^{2} \)
97 \( 1 - 1.47e5iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.94307231824655215935111506083, −10.42090738740085153348332543837, −9.368542857421231667108198194735, −8.154552571186677808607664819490, −7.29704627487840507181404034676, −6.20029091804524294991739569841, −5.22660032675330831977259968577, −3.69371101474690230104215724911, −2.37580094412295084864019564854, −1.74202425904293740801679326167, 0.16306908020263547960215966687, 1.83509203596215331450287927992, 3.15603081753176675287243664753, 4.57051091219701523062830980597, 5.51178108220517065197003432970, 6.88779430140820356208103648068, 7.42301633187027906749652171299, 8.222496831202450606822491048662, 9.761041995205028206277629860463, 10.64277100467776110643572678749

Graph of the $Z$-function along the critical line