L(s) = 1 | − 3.78i·2-s − 8.20i·3-s + 17.6·4-s − 31.0·6-s + 88.9i·7-s − 188. i·8-s + 175.·9-s − 156.·11-s − 145. i·12-s − 169i·13-s + 336.·14-s − 145.·16-s + 447. i·17-s − 664. i·18-s + 269.·19-s + ⋯ |
L(s) = 1 | − 0.668i·2-s − 0.526i·3-s + 0.552·4-s − 0.352·6-s + 0.686i·7-s − 1.03i·8-s + 0.722·9-s − 0.390·11-s − 0.290i·12-s − 0.277i·13-s + 0.459·14-s − 0.142·16-s + 0.375i·17-s − 0.483i·18-s + 0.171·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(−0.447+0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), −0.447+0.894i)
|
Particular Values
L(3) |
≈ |
2.625025574 |
L(21) |
≈ |
2.625025574 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+169iT |
good | 2 | 1+3.78iT−32T2 |
| 3 | 1+8.20iT−243T2 |
| 7 | 1−88.9iT−1.68e4T2 |
| 11 | 1+156.T+1.61e5T2 |
| 17 | 1−447.iT−1.41e6T2 |
| 19 | 1−269.T+2.47e6T2 |
| 23 | 1+1.37e3iT−6.43e6T2 |
| 29 | 1−3.69e3T+2.05e7T2 |
| 31 | 1−797.T+2.86e7T2 |
| 37 | 1+4.39e3iT−6.93e7T2 |
| 41 | 1−1.43e4T+1.15e8T2 |
| 43 | 1+1.13e4iT−1.47e8T2 |
| 47 | 1+9.97e3iT−2.29e8T2 |
| 53 | 1+1.15e4iT−4.18e8T2 |
| 59 | 1+7.13e3T+7.14e8T2 |
| 61 | 1−1.66e4T+8.44e8T2 |
| 67 | 1−4.21e3iT−1.35e9T2 |
| 71 | 1−1.28e4T+1.80e9T2 |
| 73 | 1−1.30e4iT−2.07e9T2 |
| 79 | 1+7.47e4T+3.07e9T2 |
| 83 | 1+8.54e3iT−3.93e9T2 |
| 89 | 1+5.95e4T+5.58e9T2 |
| 97 | 1+1.73e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52170641979929578500788896811, −9.833681550909324982747309189538, −8.583251504434373456831021302036, −7.51285482202065913064276508399, −6.66448648677402000510918547861, −5.64230680119232670955078797939, −4.14834568141101641153408609077, −2.79319066634405293823635598369, −1.92290755612145368656059573563, −0.72195375650107180667651601060,
1.24971763256407764072469099259, 2.77706767818221027446723659999, 4.17315358991876740513198613666, 5.15543729445058983672468479508, 6.35760708581194387992497164088, 7.26330665869461945153923952714, 7.932439714749123117678739107948, 9.244983650484167423809243783536, 10.21282391674200342950759019979, 10.92478876659734288405772046629