L(s) = 1 | + 8.11i·2-s − 3.22i·3-s − 33.8·4-s + 26.2·6-s + 20.7i·7-s − 15.2i·8-s + 232.·9-s + 134.·11-s + 109. i·12-s + 169i·13-s − 168.·14-s − 960.·16-s − 2.19e3i·17-s + 1.88e3i·18-s + 1.98e3·19-s + ⋯ |
L(s) = 1 | + 1.43i·2-s − 0.207i·3-s − 1.05·4-s + 0.297·6-s + 0.159i·7-s − 0.0844i·8-s + 0.957·9-s + 0.335·11-s + 0.219i·12-s + 0.277i·13-s − 0.229·14-s − 0.937·16-s − 1.84i·17-s + 1.37i·18-s + 1.25·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.252141960\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.252141960\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 - 169iT \) |
good | 2 | \( 1 - 8.11iT - 32T^{2} \) |
| 3 | \( 1 + 3.22iT - 243T^{2} \) |
| 7 | \( 1 - 20.7iT - 1.68e4T^{2} \) |
| 11 | \( 1 - 134.T + 1.61e5T^{2} \) |
| 17 | \( 1 + 2.19e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 1.98e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 4.22e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 2.54e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 1.36e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 1.41e4iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 1.17e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 6.62e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 1.48e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 - 2.42e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 1.43e3T + 7.14e8T^{2} \) |
| 61 | \( 1 - 1.62e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 1.67e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 2.71e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 6.32e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 5.81e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 1.21e5iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 4.98e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 2.13e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95502841591742620273268747690, −9.545075841507111889019881929559, −8.994183458009201841098726822970, −7.60479194631040237126053437342, −7.23328775008620077425614016519, −6.26043740264983442479912369523, −5.19288597930751357174712064821, −4.26138279276581883662092776084, −2.47038931253312622074028517608, −0.72583150274931120706694165845,
1.05602310791307346173127558315, 1.85393009214672584364261957931, 3.44799612437523565174066540821, 3.99137673253118656230178202746, 5.35931966135605886508121578247, 6.78783614182216681316962834359, 7.897020832011317533456648726660, 9.235300872652246705587873852888, 9.923672135946090102210867496329, 10.60109323713698264517285800830