Properties

Label 2-325-5.4-c5-0-5
Degree $2$
Conductor $325$
Sign $-0.447 + 0.894i$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.96i·2-s + 29.7i·3-s + 28.1·4-s + 58.4·6-s + 176. i·7-s − 118. i·8-s − 643.·9-s − 62.7·11-s + 837. i·12-s − 169i·13-s + 347.·14-s + 668.·16-s − 1.82e3i·17-s + 1.26e3i·18-s − 2.50e3·19-s + ⋯
L(s)  = 1  − 0.347i·2-s + 1.90i·3-s + 0.879·4-s + 0.663·6-s + 1.36i·7-s − 0.652i·8-s − 2.64·9-s − 0.156·11-s + 1.67i·12-s − 0.277i·13-s + 0.474·14-s + 0.652·16-s − 1.53i·17-s + 0.919i·18-s − 1.59·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{325} (274, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.4933304554\)
\(L(\frac12)\) \(\approx\) \(0.4933304554\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 + 169iT \)
good2 \( 1 + 1.96iT - 32T^{2} \)
3 \( 1 - 29.7iT - 243T^{2} \)
7 \( 1 - 176. iT - 1.68e4T^{2} \)
11 \( 1 + 62.7T + 1.61e5T^{2} \)
17 \( 1 + 1.82e3iT - 1.41e6T^{2} \)
19 \( 1 + 2.50e3T + 2.47e6T^{2} \)
23 \( 1 + 137. iT - 6.43e6T^{2} \)
29 \( 1 + 5.97e3T + 2.05e7T^{2} \)
31 \( 1 + 5.20e3T + 2.86e7T^{2} \)
37 \( 1 + 4.27e3iT - 6.93e7T^{2} \)
41 \( 1 - 1.67e4T + 1.15e8T^{2} \)
43 \( 1 - 2.15e4iT - 1.47e8T^{2} \)
47 \( 1 - 1.67e4iT - 2.29e8T^{2} \)
53 \( 1 + 2.74e3iT - 4.18e8T^{2} \)
59 \( 1 + 1.66e4T + 7.14e8T^{2} \)
61 \( 1 + 2.50e4T + 8.44e8T^{2} \)
67 \( 1 - 2.94e4iT - 1.35e9T^{2} \)
71 \( 1 + 2.69e4T + 1.80e9T^{2} \)
73 \( 1 + 3.36e4iT - 2.07e9T^{2} \)
79 \( 1 - 1.35e4T + 3.07e9T^{2} \)
83 \( 1 + 790. iT - 3.93e9T^{2} \)
89 \( 1 - 7.22e4T + 5.58e9T^{2} \)
97 \( 1 + 5.45e3iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.11541607837833626055802235058, −10.68516924903941286358940554087, −9.431029792333897162473216190423, −9.157216984587382052070805371534, −7.83442040614640277475029111067, −6.14988792432795906345773376101, −5.42844610650417452514001042372, −4.30932565319622453636770288905, −3.05540744040590152329196563285, −2.36525825410572770755879608990, 0.11150717369483002640838670940, 1.48730986556751410052349299993, 2.18357623263459783557937227795, 3.76535894237427656116041944346, 5.75701587428554165323098806944, 6.49930741654576706668309943845, 7.22484367495488484515803069028, 7.81442094704853059464585051372, 8.691649821817345043721489945482, 10.64686780396259115703354517394

Graph of the $Z$-function along the critical line