L(s) = 1 | − 1.96i·2-s + 29.7i·3-s + 28.1·4-s + 58.4·6-s + 176. i·7-s − 118. i·8-s − 643.·9-s − 62.7·11-s + 837. i·12-s − 169i·13-s + 347.·14-s + 668.·16-s − 1.82e3i·17-s + 1.26e3i·18-s − 2.50e3·19-s + ⋯ |
L(s) = 1 | − 0.347i·2-s + 1.90i·3-s + 0.879·4-s + 0.663·6-s + 1.36i·7-s − 0.652i·8-s − 2.64·9-s − 0.156·11-s + 1.67i·12-s − 0.277i·13-s + 0.474·14-s + 0.652·16-s − 1.53i·17-s + 0.919i·18-s − 1.59·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(−0.447+0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), −0.447+0.894i)
|
Particular Values
L(3) |
≈ |
0.4933304554 |
L(21) |
≈ |
0.4933304554 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+169iT |
good | 2 | 1+1.96iT−32T2 |
| 3 | 1−29.7iT−243T2 |
| 7 | 1−176.iT−1.68e4T2 |
| 11 | 1+62.7T+1.61e5T2 |
| 17 | 1+1.82e3iT−1.41e6T2 |
| 19 | 1+2.50e3T+2.47e6T2 |
| 23 | 1+137.iT−6.43e6T2 |
| 29 | 1+5.97e3T+2.05e7T2 |
| 31 | 1+5.20e3T+2.86e7T2 |
| 37 | 1+4.27e3iT−6.93e7T2 |
| 41 | 1−1.67e4T+1.15e8T2 |
| 43 | 1−2.15e4iT−1.47e8T2 |
| 47 | 1−1.67e4iT−2.29e8T2 |
| 53 | 1+2.74e3iT−4.18e8T2 |
| 59 | 1+1.66e4T+7.14e8T2 |
| 61 | 1+2.50e4T+8.44e8T2 |
| 67 | 1−2.94e4iT−1.35e9T2 |
| 71 | 1+2.69e4T+1.80e9T2 |
| 73 | 1+3.36e4iT−2.07e9T2 |
| 79 | 1−1.35e4T+3.07e9T2 |
| 83 | 1+790.iT−3.93e9T2 |
| 89 | 1−7.22e4T+5.58e9T2 |
| 97 | 1+5.45e3iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.11541607837833626055802235058, −10.68516924903941286358940554087, −9.431029792333897162473216190423, −9.157216984587382052070805371534, −7.83442040614640277475029111067, −6.14988792432795906345773376101, −5.42844610650417452514001042372, −4.30932565319622453636770288905, −3.05540744040590152329196563285, −2.36525825410572770755879608990,
0.11150717369483002640838670940, 1.48730986556751410052349299993, 2.18357623263459783557937227795, 3.76535894237427656116041944346, 5.75701587428554165323098806944, 6.49930741654576706668309943845, 7.22484367495488484515803069028, 7.81442094704853059464585051372, 8.691649821817345043721489945482, 10.64686780396259115703354517394