L(s) = 1 | − 1.96i·2-s + 29.7i·3-s + 28.1·4-s + 58.4·6-s + 176. i·7-s − 118. i·8-s − 643.·9-s − 62.7·11-s + 837. i·12-s − 169i·13-s + 347.·14-s + 668.·16-s − 1.82e3i·17-s + 1.26e3i·18-s − 2.50e3·19-s + ⋯ |
L(s) = 1 | − 0.347i·2-s + 1.90i·3-s + 0.879·4-s + 0.663·6-s + 1.36i·7-s − 0.652i·8-s − 2.64·9-s − 0.156·11-s + 1.67i·12-s − 0.277i·13-s + 0.474·14-s + 0.652·16-s − 1.53i·17-s + 0.919i·18-s − 1.59·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.4933304554\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4933304554\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + 169iT \) |
good | 2 | \( 1 + 1.96iT - 32T^{2} \) |
| 3 | \( 1 - 29.7iT - 243T^{2} \) |
| 7 | \( 1 - 176. iT - 1.68e4T^{2} \) |
| 11 | \( 1 + 62.7T + 1.61e5T^{2} \) |
| 17 | \( 1 + 1.82e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 2.50e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 137. iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 5.97e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 5.20e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 4.27e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 1.67e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 2.15e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 1.67e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 + 2.74e3iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 1.66e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 2.50e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 2.94e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 2.69e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 3.36e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 1.35e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 790. iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 7.22e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 5.45e3iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11541607837833626055802235058, −10.68516924903941286358940554087, −9.431029792333897162473216190423, −9.157216984587382052070805371534, −7.83442040614640277475029111067, −6.14988792432795906345773376101, −5.42844610650417452514001042372, −4.30932565319622453636770288905, −3.05540744040590152329196563285, −2.36525825410572770755879608990,
0.11150717369483002640838670940, 1.48730986556751410052349299993, 2.18357623263459783557937227795, 3.76535894237427656116041944346, 5.75701587428554165323098806944, 6.49930741654576706668309943845, 7.22484367495488484515803069028, 7.81442094704853059464585051372, 8.691649821817345043721489945482, 10.64686780396259115703354517394