Properties

Label 2-325-5.4-c5-0-47
Degree $2$
Conductor $325$
Sign $0.447 - 0.894i$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.396i·2-s + 11.4i·3-s + 31.8·4-s − 4.55·6-s + 8.04i·7-s + 25.3i·8-s + 110.·9-s + 335.·11-s + 366. i·12-s + 169i·13-s − 3.19·14-s + 1.00e3·16-s + 38.1i·17-s + 43.9i·18-s − 1.17e3·19-s + ⋯
L(s)  = 1  + 0.0701i·2-s + 0.737i·3-s + 0.995·4-s − 0.0517·6-s + 0.0620i·7-s + 0.139i·8-s + 0.456·9-s + 0.837·11-s + 0.733i·12-s + 0.277i·13-s − 0.00435·14-s + 0.985·16-s + 0.0320i·17-s + 0.0319i·18-s − 0.749·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{325} (274, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(3.172682102\)
\(L(\frac12)\) \(\approx\) \(3.172682102\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - 169iT \)
good2 \( 1 - 0.396iT - 32T^{2} \)
3 \( 1 - 11.4iT - 243T^{2} \)
7 \( 1 - 8.04iT - 1.68e4T^{2} \)
11 \( 1 - 335.T + 1.61e5T^{2} \)
17 \( 1 - 38.1iT - 1.41e6T^{2} \)
19 \( 1 + 1.17e3T + 2.47e6T^{2} \)
23 \( 1 + 1.67e3iT - 6.43e6T^{2} \)
29 \( 1 - 6.70e3T + 2.05e7T^{2} \)
31 \( 1 - 7.85e3T + 2.86e7T^{2} \)
37 \( 1 + 1.71e3iT - 6.93e7T^{2} \)
41 \( 1 + 1.00e4T + 1.15e8T^{2} \)
43 \( 1 + 1.08e4iT - 1.47e8T^{2} \)
47 \( 1 - 1.29e4iT - 2.29e8T^{2} \)
53 \( 1 + 2.63e3iT - 4.18e8T^{2} \)
59 \( 1 + 4.95e3T + 7.14e8T^{2} \)
61 \( 1 + 4.37e4T + 8.44e8T^{2} \)
67 \( 1 + 9.17e3iT - 1.35e9T^{2} \)
71 \( 1 + 1.30e4T + 1.80e9T^{2} \)
73 \( 1 - 4.17e4iT - 2.07e9T^{2} \)
79 \( 1 - 4.98e4T + 3.07e9T^{2} \)
83 \( 1 - 8.61e4iT - 3.93e9T^{2} \)
89 \( 1 - 6.72e4T + 5.58e9T^{2} \)
97 \( 1 - 1.75e5iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72571184267423537906986321940, −10.24081113373247996810230521309, −9.154831279245133542781750289175, −8.130563526767445718772365978761, −6.86467150418391950247285975724, −6.28330625443407165857755591769, −4.82441467496599727968044140728, −3.84479867929998221671243409071, −2.53690896606775342189793642960, −1.21033263059149027270926338228, 0.940284335217437725910994376327, 1.86540403610743283646628988876, 3.09650945543894475618184885924, 4.49622016377348716970923409345, 6.12765866893591834816283564863, 6.69808431864783242605252017753, 7.57843028752942039430398243580, 8.512710830931869934540923669104, 9.896543809198597510729745232787, 10.62791589917596542648521873950

Graph of the $Z$-function along the critical line