L(s) = 1 | + 0.396i·2-s + 11.4i·3-s + 31.8·4-s − 4.55·6-s + 8.04i·7-s + 25.3i·8-s + 110.·9-s + 335.·11-s + 366. i·12-s + 169i·13-s − 3.19·14-s + 1.00e3·16-s + 38.1i·17-s + 43.9i·18-s − 1.17e3·19-s + ⋯ |
L(s) = 1 | + 0.0701i·2-s + 0.737i·3-s + 0.995·4-s − 0.0517·6-s + 0.0620i·7-s + 0.139i·8-s + 0.456·9-s + 0.837·11-s + 0.733i·12-s + 0.277i·13-s − 0.00435·14-s + 0.985·16-s + 0.0320i·17-s + 0.0319i·18-s − 0.749·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(0.447−0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), 0.447−0.894i)
|
Particular Values
L(3) |
≈ |
3.172682102 |
L(21) |
≈ |
3.172682102 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1−169iT |
good | 2 | 1−0.396iT−32T2 |
| 3 | 1−11.4iT−243T2 |
| 7 | 1−8.04iT−1.68e4T2 |
| 11 | 1−335.T+1.61e5T2 |
| 17 | 1−38.1iT−1.41e6T2 |
| 19 | 1+1.17e3T+2.47e6T2 |
| 23 | 1+1.67e3iT−6.43e6T2 |
| 29 | 1−6.70e3T+2.05e7T2 |
| 31 | 1−7.85e3T+2.86e7T2 |
| 37 | 1+1.71e3iT−6.93e7T2 |
| 41 | 1+1.00e4T+1.15e8T2 |
| 43 | 1+1.08e4iT−1.47e8T2 |
| 47 | 1−1.29e4iT−2.29e8T2 |
| 53 | 1+2.63e3iT−4.18e8T2 |
| 59 | 1+4.95e3T+7.14e8T2 |
| 61 | 1+4.37e4T+8.44e8T2 |
| 67 | 1+9.17e3iT−1.35e9T2 |
| 71 | 1+1.30e4T+1.80e9T2 |
| 73 | 1−4.17e4iT−2.07e9T2 |
| 79 | 1−4.98e4T+3.07e9T2 |
| 83 | 1−8.61e4iT−3.93e9T2 |
| 89 | 1−6.72e4T+5.58e9T2 |
| 97 | 1−1.75e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.72571184267423537906986321940, −10.24081113373247996810230521309, −9.154831279245133542781750289175, −8.130563526767445718772365978761, −6.86467150418391950247285975724, −6.28330625443407165857755591769, −4.82441467496599727968044140728, −3.84479867929998221671243409071, −2.53690896606775342189793642960, −1.21033263059149027270926338228,
0.940284335217437725910994376327, 1.86540403610743283646628988876, 3.09650945543894475618184885924, 4.49622016377348716970923409345, 6.12765866893591834816283564863, 6.69808431864783242605252017753, 7.57843028752942039430398243580, 8.512710830931869934540923669104, 9.896543809198597510729745232787, 10.62791589917596542648521873950