L(s) = 1 | − 10.1i·2-s + 24.5i·3-s − 70.0·4-s + 247.·6-s − 72.1i·7-s + 384. i·8-s − 358.·9-s + 127.·11-s − 1.71e3i·12-s − 169i·13-s − 728.·14-s + 1.64e3·16-s + 2.15e3i·17-s + 3.61e3i·18-s − 2.72e3·19-s + ⋯ |
L(s) = 1 | − 1.78i·2-s + 1.57i·3-s − 2.18·4-s + 2.80·6-s − 0.556i·7-s + 2.12i·8-s − 1.47·9-s + 0.317·11-s − 3.44i·12-s − 0.277i·13-s − 0.993·14-s + 1.60·16-s + 1.80i·17-s + 2.63i·18-s − 1.73·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(−0.447+0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), −0.447+0.894i)
|
Particular Values
L(3) |
≈ |
1.226203782 |
L(21) |
≈ |
1.226203782 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+169iT |
good | 2 | 1+10.1iT−32T2 |
| 3 | 1−24.5iT−243T2 |
| 7 | 1+72.1iT−1.68e4T2 |
| 11 | 1−127.T+1.61e5T2 |
| 17 | 1−2.15e3iT−1.41e6T2 |
| 19 | 1+2.72e3T+2.47e6T2 |
| 23 | 1+2.65e3iT−6.43e6T2 |
| 29 | 1−5.88e3T+2.05e7T2 |
| 31 | 1−1.36e3T+2.86e7T2 |
| 37 | 1+481.iT−6.93e7T2 |
| 41 | 1−7.38e3T+1.15e8T2 |
| 43 | 1+1.01e4iT−1.47e8T2 |
| 47 | 1+1.63e4iT−2.29e8T2 |
| 53 | 1−9.06e3iT−4.18e8T2 |
| 59 | 1+2.95e4T+7.14e8T2 |
| 61 | 1−1.64e4T+8.44e8T2 |
| 67 | 1+6.15e4iT−1.35e9T2 |
| 71 | 1+5.22e3T+1.80e9T2 |
| 73 | 1+6.78e4iT−2.07e9T2 |
| 79 | 1−8.95e4T+3.07e9T2 |
| 83 | 1+7.89e4iT−3.93e9T2 |
| 89 | 1+1.11e5T+5.58e9T2 |
| 97 | 1+7.15e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57127637115679268052131421827, −10.09778378512772204987001551623, −8.935077243303355664054559841755, −8.397743745190988775626943034507, −6.20197205332137580795549425688, −4.65205638026373899382546098118, −4.16259405974190355586257935713, −3.34818940643426416303641401175, −2.02993396173403012153945068077, −0.43031295940129504376659832031,
0.875135445223271934174466190226, 2.50781147978392259357850902122, 4.51924846111782127497741709882, 5.67984795001947724957616893709, 6.50722936244026230425058337375, 7.07262865687862113074382046392, 7.949067440612872588068863616525, 8.692238740307307371459756765837, 9.554444891715790156695952603413, 11.39866621158612150537494877409