L(s) = 1 | − 7.50i·2-s + 17.3i·3-s − 24.3·4-s + 130.·6-s + 149. i·7-s − 57.2i·8-s − 58.1·9-s − 492.·11-s − 423. i·12-s − 169i·13-s + 1.12e3·14-s − 1.20e3·16-s − 1.82e3i·17-s + 436. i·18-s − 424.·19-s + ⋯ |
L(s) = 1 | − 1.32i·2-s + 1.11i·3-s − 0.761·4-s + 1.47·6-s + 1.15i·7-s − 0.316i·8-s − 0.239·9-s − 1.22·11-s − 0.848i·12-s − 0.277i·13-s + 1.53·14-s − 1.18·16-s − 1.53i·17-s + 0.317i·18-s − 0.269·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(0.447+0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), 0.447+0.894i)
|
Particular Values
L(3) |
≈ |
1.864319314 |
L(21) |
≈ |
1.864319314 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+169iT |
good | 2 | 1+7.50iT−32T2 |
| 3 | 1−17.3iT−243T2 |
| 7 | 1−149.iT−1.68e4T2 |
| 11 | 1+492.T+1.61e5T2 |
| 17 | 1+1.82e3iT−1.41e6T2 |
| 19 | 1+424.T+2.47e6T2 |
| 23 | 1+3.66e3iT−6.43e6T2 |
| 29 | 1−8.19e3T+2.05e7T2 |
| 31 | 1−8.11e3T+2.86e7T2 |
| 37 | 1−6.29e3iT−6.93e7T2 |
| 41 | 1−4.29e3T+1.15e8T2 |
| 43 | 1−5.82e3iT−1.47e8T2 |
| 47 | 1−8.50e3iT−2.29e8T2 |
| 53 | 1−7.04e3iT−4.18e8T2 |
| 59 | 1−2.15e4T+7.14e8T2 |
| 61 | 1−3.57e4T+8.44e8T2 |
| 67 | 1+1.52e4iT−1.35e9T2 |
| 71 | 1−6.91e4T+1.80e9T2 |
| 73 | 1+4.13e3iT−2.07e9T2 |
| 79 | 1−1.60e4T+3.07e9T2 |
| 83 | 1+1.15e5iT−3.93e9T2 |
| 89 | 1−3.52e4T+5.58e9T2 |
| 97 | 1+3.21e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.45201687758172883401365643497, −10.04233128099490581992637466830, −9.147674734229194011848924846073, −8.214324291834379192389817057462, −6.57810878930727093234539995492, −5.08839984411517801036699204944, −4.49005051830412697256678397686, −2.89879408365057798961170212146, −2.55981906642301570068162369901, −0.64512586621269880656358124284,
0.874186170545733273698688366043, 2.25651110159700338377074756800, 4.09476344328708541469434066846, 5.35988097830303633545635542894, 6.45868743625371950490454349312, 7.02994233302115202859974909201, 7.945368557020319902541100752235, 8.303841858885461398810312915954, 10.00838926192082830864333821053, 10.85092580386724506624407795430