L(s) = 1 | + 1.83i·2-s − 11.9i·3-s + 28.6·4-s + 21.9·6-s + 112. i·7-s + 111. i·8-s + 100.·9-s + 162.·11-s − 341. i·12-s + 169i·13-s − 206.·14-s + 711.·16-s + 379. i·17-s + 185. i·18-s + 284.·19-s + ⋯ |
L(s) = 1 | + 0.324i·2-s − 0.765i·3-s + 0.894·4-s + 0.248·6-s + 0.865i·7-s + 0.615i·8-s + 0.414·9-s + 0.405·11-s − 0.684i·12-s + 0.277i·13-s − 0.281·14-s + 0.694·16-s + 0.318i·17-s + 0.134i·18-s + 0.180·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(0.447−0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), 0.447−0.894i)
|
Particular Values
L(3) |
≈ |
2.695389969 |
L(21) |
≈ |
2.695389969 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1−169iT |
good | 2 | 1−1.83iT−32T2 |
| 3 | 1+11.9iT−243T2 |
| 7 | 1−112.iT−1.68e4T2 |
| 11 | 1−162.T+1.61e5T2 |
| 17 | 1−379.iT−1.41e6T2 |
| 19 | 1−284.T+2.47e6T2 |
| 23 | 1−4.18e3iT−6.43e6T2 |
| 29 | 1+6.27e3T+2.05e7T2 |
| 31 | 1+7.55e3T+2.86e7T2 |
| 37 | 1−7.06e3iT−6.93e7T2 |
| 41 | 1−4.16e3T+1.15e8T2 |
| 43 | 1−2.15e4iT−1.47e8T2 |
| 47 | 1+2.26e4iT−2.29e8T2 |
| 53 | 1−4.77e3iT−4.18e8T2 |
| 59 | 1−4.83e4T+7.14e8T2 |
| 61 | 1−3.65e3T+8.44e8T2 |
| 67 | 1−1.58e4iT−1.35e9T2 |
| 71 | 1+3.72e4T+1.80e9T2 |
| 73 | 1+2.93e4iT−2.07e9T2 |
| 79 | 1−4.49e4T+3.07e9T2 |
| 83 | 1−2.37e4iT−3.93e9T2 |
| 89 | 1+561.T+5.58e9T2 |
| 97 | 1−3.12e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.30280323798401902851740368916, −9.951403606597783620156376720167, −8.943117663102984580528734133793, −7.76688859930420890803411724263, −7.14808661888949397527802209113, −6.18864393037342419137371164722, −5.37621896241210634047300455149, −3.61534640569278987666313497730, −2.17912972510250573612173677230, −1.41641279620037327964612203024,
0.68573794385259305979094688765, 2.05023243237425102238506974366, 3.50124925730503693395997566675, 4.24468832922379269888108130631, 5.62021496414843989268539560769, 6.92560150943966331770121468514, 7.49427588879352611399086282803, 8.993475696879959283018405981942, 9.952694662998735051047687477136, 10.67024502496290920114450006736