Properties

Label 2-325-5.4-c5-0-30
Degree $2$
Conductor $325$
Sign $0.447 - 0.894i$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.83i·2-s − 11.9i·3-s + 28.6·4-s + 21.9·6-s + 112. i·7-s + 111. i·8-s + 100.·9-s + 162.·11-s − 341. i·12-s + 169i·13-s − 206.·14-s + 711.·16-s + 379. i·17-s + 185. i·18-s + 284.·19-s + ⋯
L(s)  = 1  + 0.324i·2-s − 0.765i·3-s + 0.894·4-s + 0.248·6-s + 0.865i·7-s + 0.615i·8-s + 0.414·9-s + 0.405·11-s − 0.684i·12-s + 0.277i·13-s − 0.281·14-s + 0.694·16-s + 0.318i·17-s + 0.134i·18-s + 0.180·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{325} (274, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.695389969\)
\(L(\frac12)\) \(\approx\) \(2.695389969\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - 169iT \)
good2 \( 1 - 1.83iT - 32T^{2} \)
3 \( 1 + 11.9iT - 243T^{2} \)
7 \( 1 - 112. iT - 1.68e4T^{2} \)
11 \( 1 - 162.T + 1.61e5T^{2} \)
17 \( 1 - 379. iT - 1.41e6T^{2} \)
19 \( 1 - 284.T + 2.47e6T^{2} \)
23 \( 1 - 4.18e3iT - 6.43e6T^{2} \)
29 \( 1 + 6.27e3T + 2.05e7T^{2} \)
31 \( 1 + 7.55e3T + 2.86e7T^{2} \)
37 \( 1 - 7.06e3iT - 6.93e7T^{2} \)
41 \( 1 - 4.16e3T + 1.15e8T^{2} \)
43 \( 1 - 2.15e4iT - 1.47e8T^{2} \)
47 \( 1 + 2.26e4iT - 2.29e8T^{2} \)
53 \( 1 - 4.77e3iT - 4.18e8T^{2} \)
59 \( 1 - 4.83e4T + 7.14e8T^{2} \)
61 \( 1 - 3.65e3T + 8.44e8T^{2} \)
67 \( 1 - 1.58e4iT - 1.35e9T^{2} \)
71 \( 1 + 3.72e4T + 1.80e9T^{2} \)
73 \( 1 + 2.93e4iT - 2.07e9T^{2} \)
79 \( 1 - 4.49e4T + 3.07e9T^{2} \)
83 \( 1 - 2.37e4iT - 3.93e9T^{2} \)
89 \( 1 + 561.T + 5.58e9T^{2} \)
97 \( 1 - 3.12e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.30280323798401902851740368916, −9.951403606597783620156376720167, −8.943117663102984580528734133793, −7.76688859930420890803411724263, −7.14808661888949397527802209113, −6.18864393037342419137371164722, −5.37621896241210634047300455149, −3.61534640569278987666313497730, −2.17912972510250573612173677230, −1.41641279620037327964612203024, 0.68573794385259305979094688765, 2.05023243237425102238506974366, 3.50124925730503693395997566675, 4.24468832922379269888108130631, 5.62021496414843989268539560769, 6.92560150943966331770121468514, 7.49427588879352611399086282803, 8.993475696879959283018405981942, 9.952694662998735051047687477136, 10.67024502496290920114450006736

Graph of the $Z$-function along the critical line