L(s) = 1 | + (0.0532 + 0.198i)2-s + (−2.75 + 4.76i)3-s + (3.42 − 1.97i)4-s + (−1.09 − 0.292i)6-s + (1.16 − 4.33i)7-s + (1.15 + 1.15i)8-s + (−10.6 − 18.4i)9-s + (−18.8 + 5.05i)11-s + 21.7i·12-s + (−8.04 + 10.2i)13-s + 0.923·14-s + (7.74 − 13.4i)16-s + (−10.6 + 6.15i)17-s + (3.09 − 3.09i)18-s + (−11.7 − 3.15i)19-s + ⋯ |
L(s) = 1 | + (0.0266 + 0.0993i)2-s + (−0.916 + 1.58i)3-s + (0.856 − 0.494i)4-s + (−0.182 − 0.0488i)6-s + (0.165 − 0.619i)7-s + (0.144 + 0.144i)8-s + (−1.18 − 2.04i)9-s + (−1.71 + 0.459i)11-s + 1.81i·12-s + (−0.619 + 0.785i)13-s + 0.0659·14-s + (0.484 − 0.838i)16-s + (−0.627 + 0.362i)17-s + (0.171 − 0.171i)18-s + (−0.619 − 0.165i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.648 + 0.760i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.648 + 0.760i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0387320 - 0.0839379i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0387320 - 0.0839379i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (8.04 - 10.2i)T \) |
good | 2 | \( 1 + (-0.0532 - 0.198i)T + (-3.46 + 2i)T^{2} \) |
| 3 | \( 1 + (2.75 - 4.76i)T + (-4.5 - 7.79i)T^{2} \) |
| 7 | \( 1 + (-1.16 + 4.33i)T + (-42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (18.8 - 5.05i)T + (104. - 60.5i)T^{2} \) |
| 17 | \( 1 + (10.6 - 6.15i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (11.7 + 3.15i)T + (312. + 180.5i)T^{2} \) |
| 23 | \( 1 + (28.0 + 16.1i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (0.962 - 1.66i)T + (-420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-25.6 + 25.6i)T - 961iT^{2} \) |
| 37 | \( 1 + (26.8 - 7.20i)T + (1.18e3 - 684.5i)T^{2} \) |
| 41 | \( 1 + (-10.3 - 38.7i)T + (-1.45e3 + 840.5i)T^{2} \) |
| 43 | \( 1 + (0.993 - 0.573i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (31.6 + 31.6i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + 26.6T + 2.80e3T^{2} \) |
| 59 | \( 1 + (1.92 - 7.16i)T + (-3.01e3 - 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-21.1 - 36.6i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (2.01 + 7.53i)T + (-3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + (-26.8 - 7.19i)T + (4.36e3 + 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-77.2 - 77.2i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 77.7T + 6.24e3T^{2} \) |
| 83 | \( 1 + (7.65 - 7.65i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (149. - 40.1i)T + (6.85e3 - 3.96e3i)T^{2} \) |
| 97 | \( 1 + (141. + 37.9i)T + (8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.56083200665958988726894552921, −10.88971665987789065698931600800, −10.20049471529622759424643358282, −9.798312046726908994347075782050, −8.230297615638795297079406728355, −6.91411661391292296418118221650, −5.95351689162337015465125299099, −4.93490395753108470738838730038, −4.23089674308609529239715239191, −2.46319603445626659460547014034,
0.04232239336771460278720027544, 1.98733408586560751663142695855, 2.79159003864142659436484168860, 5.21648231196178809985732008727, 5.94571408515582459130445743130, 6.94673951896502578465514518734, 7.83982832604670750195065485466, 8.291415245995119384954056511442, 10.36840979429208911274582999240, 11.04026913006097933007292850463