L(s) = 1 | + (−1.89 − 1.09i)2-s + (0.5 − 0.866i)3-s + (1.39 + 2.41i)4-s + (−1.89 + 1.09i)6-s + (1.5 − 0.866i)7-s − 1.73i·8-s + (1 + 1.73i)9-s + (2.29 + 1.32i)11-s + 2.79·12-s + (1 − 3.46i)13-s − 3.79·14-s + (0.895 − 1.55i)16-s + (2.29 + 3.96i)17-s − 4.37i·18-s + (1.5 − 0.866i)19-s + ⋯ |
L(s) = 1 | + (−1.34 − 0.773i)2-s + (0.288 − 0.499i)3-s + (0.697 + 1.20i)4-s + (−0.773 + 0.446i)6-s + (0.566 − 0.327i)7-s − 0.612i·8-s + (0.333 + 0.577i)9-s + (0.690 + 0.398i)11-s + 0.805·12-s + (0.277 − 0.960i)13-s − 1.01·14-s + (0.223 − 0.387i)16-s + (0.555 + 0.962i)17-s − 1.03i·18-s + (0.344 − 0.198i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.675176 - 0.521528i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.675176 - 0.521528i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (-1 + 3.46i)T \) |
good | 2 | \( 1 + (1.89 + 1.09i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.5 + 0.866i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (-1.5 + 0.866i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.29 - 1.32i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.29 - 3.96i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.5 + 0.866i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.29 - 3.96i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.29 + 3.96i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 9.66iT - 31T^{2} \) |
| 37 | \( 1 + (6.87 + 3.96i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.29 + 1.32i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.708 - 1.22i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 8.75iT - 47T^{2} \) |
| 53 | \( 1 - 1.58T + 53T^{2} \) |
| 59 | \( 1 + (-2.91 + 1.68i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.29 - 9.16i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-12.8 - 7.43i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3.08 - 1.77i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + 6T + 79T^{2} \) |
| 83 | \( 1 - 11.3iT - 83T^{2} \) |
| 89 | \( 1 + (3.70 + 2.14i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.87 - 2.23i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.24020345081733840670750067096, −10.32695996812345180558225784993, −9.745179951184091138647941015848, −8.480065661374630029776707324357, −7.930541021270174273005203443395, −7.16083055666735661037394943812, −5.52675827295297150310198933980, −3.85594446913476065813495661405, −2.25476782647259784392907809547, −1.20324617796095240324644863891,
1.34432894977297429380586293851, 3.50262229570791818763406371155, 4.92948970882041061306202912812, 6.41542147908600076254446295403, 7.05640886638769359154761955870, 8.366493690905622219781127877212, 8.886200292076874237702560506644, 9.640789114012980252890438833709, 10.46120836020649017953220288210, 11.59819216791371483104777187196