L(s) = 1 | + (−2.79 − 0.749i)2-s + (−0.266 − 0.461i)3-s + (3.80 + 2.19i)4-s + (0.399 + 1.49i)6-s + (10.0 − 2.69i)7-s + (−0.798 − 0.798i)8-s + (4.35 − 7.54i)9-s + (−3.30 + 12.3i)11-s − 2.34i·12-s + (−12.6 + 2.84i)13-s − 30.1·14-s + (−7.14 − 12.3i)16-s + (19.2 + 11.1i)17-s + (−17.8 + 17.8i)18-s + (4.52 + 16.8i)19-s + ⋯ |
L(s) = 1 | + (−1.39 − 0.374i)2-s + (−0.0888 − 0.153i)3-s + (0.950 + 0.548i)4-s + (0.0666 + 0.248i)6-s + (1.43 − 0.384i)7-s + (−0.0998 − 0.0998i)8-s + (0.484 − 0.838i)9-s + (−0.300 + 1.12i)11-s − 0.195i·12-s + (−0.975 + 0.218i)13-s − 2.15·14-s + (−0.446 − 0.773i)16-s + (1.13 + 0.653i)17-s + (−0.991 + 0.991i)18-s + (0.237 + 0.888i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.946 + 0.322i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.946 + 0.322i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.900086 - 0.149231i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.900086 - 0.149231i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (12.6 - 2.84i)T \) |
good | 2 | \( 1 + (2.79 + 0.749i)T + (3.46 + 2i)T^{2} \) |
| 3 | \( 1 + (0.266 + 0.461i)T + (-4.5 + 7.79i)T^{2} \) |
| 7 | \( 1 + (-10.0 + 2.69i)T + (42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (3.30 - 12.3i)T + (-104. - 60.5i)T^{2} \) |
| 17 | \( 1 + (-19.2 - 11.1i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-4.52 - 16.8i)T + (-312. + 180.5i)T^{2} \) |
| 23 | \( 1 + (7.30 - 4.21i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-15.3 - 26.5i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-13.1 + 13.1i)T - 961iT^{2} \) |
| 37 | \( 1 + (-13.2 + 49.4i)T + (-1.18e3 - 684.5i)T^{2} \) |
| 41 | \( 1 + (-29.7 - 7.97i)T + (1.45e3 + 840.5i)T^{2} \) |
| 43 | \( 1 + (0.921 + 0.531i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (9.18 + 9.18i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 - 43.6T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-97.0 + 26.0i)T + (3.01e3 - 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-6.91 + 11.9i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-97.0 - 25.9i)T + (3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + (0.479 + 1.78i)T + (-4.36e3 + 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-74.7 - 74.7i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 132.T + 6.24e3T^{2} \) |
| 83 | \( 1 + (53.8 - 53.8i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (-27.9 + 104. i)T + (-6.85e3 - 3.96e3i)T^{2} \) |
| 97 | \( 1 + (34.9 + 130. i)T + (-8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.17052139426779320451381066760, −10.03083956737399147296814862073, −9.826727649548731327404715034396, −8.482187365365597049918458425616, −7.66771131529977678056576244318, −7.11756635626189170390004945088, −5.33268111858859545858282074818, −4.14689034641131513758703110939, −2.09434628728981005889713038942, −1.10146575519153114427535855496,
0.923581581660854597786733498517, 2.46949559738579055486671108483, 4.63221660469782586783611926853, 5.51302271565082067281545439533, 7.07421396513001528406250028137, 8.008827066051558379848060989609, 8.307635065679793125795824019698, 9.569926898333049298149127394784, 10.32124950061172660280123154443, 11.17189599993795843498373260527