| L(s) = 1 | + 0.571i·2-s + 0.428·3-s + 1.67·4-s + 0.244i·6-s + 2.67i·7-s + 2.10i·8-s − 2.81·9-s + 5.10i·11-s + 0.715·12-s + (1.57 − 3.24i)13-s − 1.52·14-s + 2.14·16-s + 5.34·17-s − 1.61i·18-s − 6.24i·19-s + ⋯ |
| L(s) = 1 | + 0.404i·2-s + 0.247·3-s + 0.836·4-s + 0.0999i·6-s + 1.01i·7-s + 0.742i·8-s − 0.938·9-s + 1.53i·11-s + 0.206·12-s + (0.435 − 0.899i)13-s − 0.408·14-s + 0.535·16-s + 1.29·17-s − 0.379i·18-s − 1.43i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.435 - 0.899i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.435 - 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.40200 + 0.878651i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.40200 + 0.878651i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 13 | \( 1 + (-1.57 + 3.24i)T \) |
| good | 2 | \( 1 - 0.571iT - 2T^{2} \) |
| 3 | \( 1 - 0.428T + 3T^{2} \) |
| 7 | \( 1 - 2.67iT - 7T^{2} \) |
| 11 | \( 1 - 5.10iT - 11T^{2} \) |
| 17 | \( 1 - 5.34T + 17T^{2} \) |
| 19 | \( 1 + 6.24iT - 19T^{2} \) |
| 23 | \( 1 + 2.42T + 23T^{2} \) |
| 29 | \( 1 - 2.67T + 29T^{2} \) |
| 31 | \( 1 - 0.244iT - 31T^{2} \) |
| 37 | \( 1 + 3.32iT - 37T^{2} \) |
| 41 | \( 1 + 6.48iT - 41T^{2} \) |
| 43 | \( 1 + 10.9T + 43T^{2} \) |
| 47 | \( 1 + 2.67iT - 47T^{2} \) |
| 53 | \( 1 - 4.20T + 53T^{2} \) |
| 59 | \( 1 + 0.899iT - 59T^{2} \) |
| 61 | \( 1 + 5.81T + 61T^{2} \) |
| 67 | \( 1 - 2.18iT - 67T^{2} \) |
| 71 | \( 1 + 6.24iT - 71T^{2} \) |
| 73 | \( 1 + 10.9iT - 73T^{2} \) |
| 79 | \( 1 + 3.63T + 79T^{2} \) |
| 83 | \( 1 - 9.81iT - 83T^{2} \) |
| 89 | \( 1 - 7.63iT - 89T^{2} \) |
| 97 | \( 1 + 11.3iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.97045595201104751691246878524, −10.89778673091568584246420513129, −9.896007771289026476052111960619, −8.777578116326118340474513018473, −7.943692419710875875259196048989, −7.00701819562183120238788364056, −5.86020772513960203313180208091, −5.12649220157358248639883320298, −3.13866581739674056490207426959, −2.16597279139550307894027083046,
1.31453243815159125238767852348, 3.08714308887926826851126581818, 3.80407580979924953548347026866, 5.73951147936088571792146869453, 6.48293003178000099590288477798, 7.77898313594428322246098196564, 8.459396131578689769845415387278, 9.871014579669331020419477797972, 10.59922150076698400097495287630, 11.50244674623486724429202756859