L(s) = 1 | + (0.963 − 3.59i)2-s + (−1.65 − 2.86i)3-s + (−8.54 − 4.93i)4-s + (−11.9 + 3.19i)6-s + (3.22 + 12.0i)7-s + (−15.4 + 15.4i)8-s + (−0.981 + 1.69i)9-s + (−5.33 − 1.42i)11-s + 32.6i·12-s + (−11.7 + 5.65i)13-s + 46.4·14-s + (20.9 + 36.3i)16-s + (2.81 + 1.62i)17-s + (5.16 + 5.16i)18-s + (−26.6 + 7.14i)19-s + ⋯ |
L(s) = 1 | + (0.481 − 1.79i)2-s + (−0.551 − 0.955i)3-s + (−2.13 − 1.23i)4-s + (−1.98 + 0.531i)6-s + (0.460 + 1.71i)7-s + (−1.93 + 1.93i)8-s + (−0.109 + 0.188i)9-s + (−0.484 − 0.129i)11-s + 2.72i·12-s + (−0.900 + 0.435i)13-s + 3.31·14-s + (1.31 + 2.27i)16-s + (0.165 + 0.0956i)17-s + (0.287 + 0.287i)18-s + (−1.40 + 0.376i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.882 - 0.469i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.882 - 0.469i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.110506 + 0.0275693i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.110506 + 0.0275693i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (11.7 - 5.65i)T \) |
good | 2 | \( 1 + (-0.963 + 3.59i)T + (-3.46 - 2i)T^{2} \) |
| 3 | \( 1 + (1.65 + 2.86i)T + (-4.5 + 7.79i)T^{2} \) |
| 7 | \( 1 + (-3.22 - 12.0i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (5.33 + 1.42i)T + (104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (-2.81 - 1.62i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (26.6 - 7.14i)T + (312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (8.58 - 4.95i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (26.7 + 46.3i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (11.1 + 11.1i)T + 961iT^{2} \) |
| 37 | \( 1 + (-25.6 - 6.86i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (-15.3 + 57.2i)T + (-1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (-3.83 - 2.21i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-7.21 + 7.21i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + 36.3T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-7.30 - 27.2i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (35.8 - 62.1i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-12.7 + 47.6i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (-34.5 + 9.24i)T + (4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (31.2 - 31.2i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 82.1T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-42.9 - 42.9i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (35.0 + 9.39i)T + (6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (49.4 - 13.2i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00617123330944356692180013100, −9.797896397699933988171571614717, −9.000787402419690660721726997541, −7.86949571936724873835240585393, −6.08206965504304754496376990094, −5.41683835905949507210597157781, −4.16936497054444421621710549187, −2.43673227539537236965048550482, −1.90450392520702897800641610111, −0.04728452699289352834526062323,
3.77782657899802614976551311231, 4.65957320206733024377751268684, 5.12567095671258071047421169923, 6.45060215410747607611650059849, 7.43108532115665047933715608040, 7.977787714442100411118664075606, 9.350391501877412776648401913448, 10.35334981171886767598914116711, 11.01063441231194233726586596167, 12.72998806003830716615346417823