L(s) = 1 | + (1.00 − 3.73i)2-s + (−1.63 − 2.83i)3-s + (−9.46 − 5.46i)4-s + (−12.2 + 3.27i)6-s + (−2.30 − 8.61i)7-s + (−18.9 + 18.9i)8-s + (−0.844 + 1.46i)9-s + (3.75 + 1.00i)11-s + 35.7i·12-s + (6.85 − 11.0i)13-s − 34.4·14-s + (29.9 + 51.7i)16-s + (5.00 + 2.89i)17-s + (4.61 + 4.61i)18-s + (16.7 − 4.48i)19-s + ⋯ |
L(s) = 1 | + (0.500 − 1.86i)2-s + (−0.544 − 0.943i)3-s + (−2.36 − 1.36i)4-s + (−2.03 + 0.545i)6-s + (−0.329 − 1.23i)7-s + (−2.36 + 2.36i)8-s + (−0.0938 + 0.162i)9-s + (0.341 + 0.0913i)11-s + 2.97i·12-s + (0.527 − 0.849i)13-s − 2.46·14-s + (1.86 + 3.23i)16-s + (0.294 + 0.170i)17-s + (0.256 + 0.256i)18-s + (0.881 − 0.236i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.494 - 0.869i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.494 - 0.869i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.05289 + 0.612738i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.05289 + 0.612738i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (-6.85 + 11.0i)T \) |
good | 2 | \( 1 + (-1.00 + 3.73i)T + (-3.46 - 2i)T^{2} \) |
| 3 | \( 1 + (1.63 + 2.83i)T + (-4.5 + 7.79i)T^{2} \) |
| 7 | \( 1 + (2.30 + 8.61i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-3.75 - 1.00i)T + (104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (-5.00 - 2.89i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-16.7 + 4.48i)T + (312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (-8.48 + 4.89i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (7.28 + 12.6i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-26.8 - 26.8i)T + 961iT^{2} \) |
| 37 | \( 1 + (40.8 + 10.9i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (-11.2 + 42.0i)T + (-1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (-51.5 - 29.7i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (50.4 - 50.4i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + 28.3T + 2.80e3T^{2} \) |
| 59 | \( 1 + (2.48 + 9.25i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-10.4 + 18.1i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (2.88 - 10.7i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (7.29 - 1.95i)T + (4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-36.6 + 36.6i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 45.8T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-42.4 - 42.4i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (86.1 + 23.0i)T + (6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-48.7 + 13.0i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82561326454778555589581157698, −10.13728768824812075575383158247, −9.187038808426098608973691968767, −7.76674217784408292570601092612, −6.48854902409581272510289115486, −5.33913602945890729555400986464, −4.05427135023479931158902279608, −3.10908253696449507129577855403, −1.38386279758750875707848285031, −0.60249262296732552721263320512,
3.46368385088013956676705645321, 4.56784644514338200672480333368, 5.45291358947692300424119740581, 6.07974041883225270963937477796, 7.12175465909076044142446013140, 8.334485790104927962151613589451, 9.191677012137646581700434110077, 9.799159600675121754310611606168, 11.45987253836553037457325218820, 12.27459365503071133461130995160