L(s) = 1 | + (−0.534 + 1.99i)2-s + (−2.25 − 3.91i)3-s + (−0.231 − 0.133i)4-s + (9.01 − 2.41i)6-s + (−1.95 − 7.29i)7-s + (−5.45 + 5.45i)8-s + (−5.70 + 9.88i)9-s + (5.50 + 1.47i)11-s + 1.20i·12-s + (11.4 − 6.13i)13-s + 15.6·14-s + (−8.49 − 14.7i)16-s + (−3.81 − 2.20i)17-s + (−16.6 − 16.6i)18-s + (−28.2 + 7.57i)19-s + ⋯ |
L(s) = 1 | + (−0.267 + 0.997i)2-s + (−0.753 − 1.30i)3-s + (−0.0579 − 0.0334i)4-s + (1.50 − 0.402i)6-s + (−0.279 − 1.04i)7-s + (−0.681 + 0.681i)8-s + (−0.634 + 1.09i)9-s + (0.500 + 0.134i)11-s + 0.100i·12-s + (0.881 − 0.471i)13-s + 1.11·14-s + (−0.531 − 0.920i)16-s + (−0.224 − 0.129i)17-s + (−0.926 − 0.926i)18-s + (−1.48 + 0.398i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.862 + 0.505i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.862 + 0.505i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0648193 - 0.238830i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0648193 - 0.238830i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (-11.4 + 6.13i)T \) |
good | 2 | \( 1 + (0.534 - 1.99i)T + (-3.46 - 2i)T^{2} \) |
| 3 | \( 1 + (2.25 + 3.91i)T + (-4.5 + 7.79i)T^{2} \) |
| 7 | \( 1 + (1.95 + 7.29i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-5.50 - 1.47i)T + (104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (3.81 + 2.20i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (28.2 - 7.57i)T + (312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (33.6 - 19.4i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (1.49 + 2.59i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (11.6 + 11.6i)T + 961iT^{2} \) |
| 37 | \( 1 + (39.0 + 10.4i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (4.81 - 17.9i)T + (-1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (36.2 + 20.9i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (1.03 - 1.03i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 29.2T + 2.80e3T^{2} \) |
| 59 | \( 1 + (18.7 + 70.0i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-34.5 + 59.8i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (29.6 - 110. i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (84.3 - 22.5i)T + (4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (55.2 - 55.2i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 27.1T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-74.2 - 74.2i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-23.1 - 6.18i)T + (6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-177. + 47.6i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.19917032058802748959968727254, −10.15137380236251314295084770343, −8.626416191290879984728920855989, −7.81720830237005455766830898816, −7.00535116787949634748033349250, −6.38281939809095849521086234642, −5.65323586563295280131431696452, −3.84111481500220749805465937910, −1.79852729091665033520060210689, −0.13126192549013080002665006054,
2.03874376891600744658235801457, 3.52170853697059926531810650264, 4.47138122334798178411607378630, 5.92874108191149367987826212505, 6.44722228073150945212564860530, 8.763423909551236086521232472571, 9.103569686054712271748123563635, 10.36506617123617975609777070179, 10.61086430989246892768221253608, 11.73365900204861391983052691808