L(s) = 1 | + (0.106 − 0.396i)2-s + (−1.67 − 2.89i)3-s + (3.31 + 1.91i)4-s + (−1.32 + 0.354i)6-s + (0.223 + 0.834i)7-s + (2.27 − 2.27i)8-s + (−1.08 + 1.88i)9-s + (7.17 + 1.92i)11-s − 12.8i·12-s + (−1.96 − 12.8i)13-s + 0.354·14-s + (7.00 + 12.1i)16-s + (2.20 + 1.27i)17-s + (0.632 + 0.632i)18-s + (12.8 − 3.43i)19-s + ⋯ |
L(s) = 1 | + (0.0530 − 0.198i)2-s + (−0.557 − 0.965i)3-s + (0.829 + 0.478i)4-s + (−0.220 + 0.0591i)6-s + (0.0319 + 0.119i)7-s + (0.283 − 0.283i)8-s + (−0.121 + 0.209i)9-s + (0.652 + 0.174i)11-s − 1.06i·12-s + (−0.150 − 0.988i)13-s + 0.0252·14-s + (0.437 + 0.758i)16-s + (0.129 + 0.0748i)17-s + (0.0351 + 0.0351i)18-s + (0.675 − 0.180i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.188 + 0.981i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.188 + 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.37817 - 1.13832i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37817 - 1.13832i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (1.96 + 12.8i)T \) |
good | 2 | \( 1 + (-0.106 + 0.396i)T + (-3.46 - 2i)T^{2} \) |
| 3 | \( 1 + (1.67 + 2.89i)T + (-4.5 + 7.79i)T^{2} \) |
| 7 | \( 1 + (-0.223 - 0.834i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-7.17 - 1.92i)T + (104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (-2.20 - 1.27i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-12.8 + 3.43i)T + (312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (-26.5 + 15.3i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (11.5 + 19.9i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (30.9 + 30.9i)T + 961iT^{2} \) |
| 37 | \( 1 + (-32.1 - 8.61i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (-3.57 + 13.3i)T + (-1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (49.0 + 28.3i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (19.6 - 19.6i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 41.0T + 2.80e3T^{2} \) |
| 59 | \( 1 + (3.49 + 13.0i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (44.1 - 76.4i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-2.49 + 9.29i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (-121. + 32.6i)T + (4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (86.4 - 86.4i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 29.8T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-106. - 106. i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-78.1 - 20.9i)T + (6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (116. - 31.2i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.48315294528481918749383850171, −10.56017996055079403265907957773, −9.352530542856725930291352719579, −7.993271834971192633071634459145, −7.24258740865377698630247470288, −6.47855148065796243818406247410, −5.47326490909118477003034879768, −3.74788761151332208591397926546, −2.39547492293908683727421242345, −0.981460520168900462326075793537,
1.56408236649394470058995074544, 3.40894693673335267892725081302, 4.75576525085471048436088746841, 5.56120125719161327637802013601, 6.68173800208145123105792092195, 7.51034574022817945321896871976, 9.118529051704704232739721594244, 9.804656814217158626143068436245, 10.85638281550489207662692156189, 11.30481964434326663456577358424