L(s) = 1 | + (0.222 − 0.830i)2-s + (0.435 + 0.754i)3-s + (2.82 + 1.63i)4-s + (0.724 − 0.194i)6-s + (1.18 + 4.40i)7-s + (4.41 − 4.41i)8-s + (4.12 − 7.13i)9-s + (5.64 + 1.51i)11-s + 2.84i·12-s + (−12.9 + 1.26i)13-s + 3.92·14-s + (3.83 + 6.64i)16-s + (14.1 + 8.16i)17-s + (−5.01 − 5.01i)18-s + (17.2 − 4.62i)19-s + ⋯ |
L(s) = 1 | + (0.111 − 0.415i)2-s + (0.145 + 0.251i)3-s + (0.705 + 0.407i)4-s + (0.120 − 0.0323i)6-s + (0.168 + 0.629i)7-s + (0.551 − 0.551i)8-s + (0.457 − 0.792i)9-s + (0.513 + 0.137i)11-s + 0.236i·12-s + (−0.995 + 0.0973i)13-s + 0.280·14-s + (0.239 + 0.415i)16-s + (0.832 + 0.480i)17-s + (−0.278 − 0.278i)18-s + (0.908 − 0.243i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 - 0.135i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.990 - 0.135i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.37371 + 0.161780i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.37371 + 0.161780i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (12.9 - 1.26i)T \) |
good | 2 | \( 1 + (-0.222 + 0.830i)T + (-3.46 - 2i)T^{2} \) |
| 3 | \( 1 + (-0.435 - 0.754i)T + (-4.5 + 7.79i)T^{2} \) |
| 7 | \( 1 + (-1.18 - 4.40i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-5.64 - 1.51i)T + (104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (-14.1 - 8.16i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-17.2 + 4.62i)T + (312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (17.4 - 10.0i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-23.1 - 40.0i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (6.38 + 6.38i)T + 961iT^{2} \) |
| 37 | \( 1 + (2.47 + 0.662i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (-8.73 + 32.6i)T + (-1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (63.1 + 36.4i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (4.72 - 4.72i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 11.7T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-7.51 - 28.0i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-28.4 + 49.2i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-5.20 + 19.4i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (117. - 31.3i)T + (4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-24.8 + 24.8i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 84.1T + 6.24e3T^{2} \) |
| 83 | \( 1 + (19.8 + 19.8i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (116. + 31.1i)T + (6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-80.6 + 21.6i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.82606121190708133053837597591, −10.41015518270900171016328257094, −9.729286653547577378623906829112, −8.693485130981921426810952932749, −7.47602058884585422239107096978, −6.70376275246581951415242945693, −5.38652722225309507799030101165, −3.97042940005936509741072465040, −2.99297678400894922242330741795, −1.57406035431373792483677368428,
1.30629053770174816686082938348, 2.69595404086727816514193246932, 4.45700790529341556977950042105, 5.47690574510711287423492549995, 6.67552436652642172533971527275, 7.50866770861325556320144375164, 8.079338126152995685315519622469, 9.852987143622174170130598367203, 10.25039218100637940946911887507, 11.47502904652081114807132435771