| L(s) = 1 | + (−0.106 + 0.396i)2-s + (1.67 + 2.89i)3-s + (3.31 + 1.91i)4-s + (−1.32 + 0.354i)6-s + (−0.223 − 0.834i)7-s + (−2.27 + 2.27i)8-s + (−1.08 + 1.88i)9-s + (7.17 + 1.92i)11-s + 12.8i·12-s + (1.96 + 12.8i)13-s + 0.354·14-s + (7.00 + 12.1i)16-s + (−2.20 − 1.27i)17-s + (−0.632 − 0.632i)18-s + (12.8 − 3.43i)19-s + ⋯ |
| L(s) = 1 | + (−0.0530 + 0.198i)2-s + (0.557 + 0.965i)3-s + (0.829 + 0.478i)4-s + (−0.220 + 0.0591i)6-s + (−0.0319 − 0.119i)7-s + (−0.283 + 0.283i)8-s + (−0.121 + 0.209i)9-s + (0.652 + 0.174i)11-s + 1.06i·12-s + (0.150 + 0.988i)13-s + 0.0252·14-s + (0.437 + 0.758i)16-s + (−0.129 − 0.0748i)17-s + (−0.0351 − 0.0351i)18-s + (0.675 − 0.180i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.188 - 0.981i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.188 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(1.49393 + 1.80871i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.49393 + 1.80871i\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 13 | \( 1 + (-1.96 - 12.8i)T \) |
| good | 2 | \( 1 + (0.106 - 0.396i)T + (-3.46 - 2i)T^{2} \) |
| 3 | \( 1 + (-1.67 - 2.89i)T + (-4.5 + 7.79i)T^{2} \) |
| 7 | \( 1 + (0.223 + 0.834i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-7.17 - 1.92i)T + (104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (2.20 + 1.27i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-12.8 + 3.43i)T + (312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (26.5 - 15.3i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (11.5 + 19.9i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (30.9 + 30.9i)T + 961iT^{2} \) |
| 37 | \( 1 + (32.1 + 8.61i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (-3.57 + 13.3i)T + (-1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (-49.0 - 28.3i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-19.6 + 19.6i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + 41.0T + 2.80e3T^{2} \) |
| 59 | \( 1 + (3.49 + 13.0i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (44.1 - 76.4i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (2.49 - 9.29i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (-121. + 32.6i)T + (4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-86.4 + 86.4i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 29.8T + 6.24e3T^{2} \) |
| 83 | \( 1 + (106. + 106. i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-78.1 - 20.9i)T + (6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-116. + 31.2i)T + (8.14e3 - 4.70e3i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.61763473241622166944062253942, −10.72314189084329581738379414190, −9.569563364136400701548014911096, −9.048062380084038127561507914336, −7.83137690400938571388941548378, −6.93582329085402733665150298788, −5.84690431417561624108014973277, −4.21512183986886516189294179927, −3.52174954745619756180819443946, −2.04116034368660540783764646345,
1.14480669666583025053419364614, 2.26938593002479733114667816834, 3.45612934267250405751700584929, 5.39171149948673600791249306206, 6.42223247142879304474651816575, 7.28233111729587600125405264083, 8.124467521501019324037682499880, 9.213966224979917905066089812132, 10.36711711873148390974319360910, 11.08369310543307940847892895116