L(s) = 1 | + 8.23·2-s + 11.6·3-s + 35.8·4-s + 95.8·6-s − 195.·7-s + 31.9·8-s − 107.·9-s + 64.5·11-s + 417.·12-s + 169·13-s − 1.60e3·14-s − 885.·16-s + 426.·17-s − 886.·18-s − 959.·19-s − 2.27e3·21-s + 531.·22-s − 499.·23-s + 371.·24-s + 1.39e3·26-s − 4.07e3·27-s − 6.99e3·28-s + 1.28e3·29-s − 6.73e3·31-s − 8.31e3·32-s + 751.·33-s + 3.50e3·34-s + ⋯ |
L(s) = 1 | + 1.45·2-s + 0.746·3-s + 1.12·4-s + 1.08·6-s − 1.50·7-s + 0.176·8-s − 0.442·9-s + 0.160·11-s + 0.836·12-s + 0.277·13-s − 2.19·14-s − 0.864·16-s + 0.357·17-s − 0.644·18-s − 0.609·19-s − 1.12·21-s + 0.234·22-s − 0.196·23-s + 0.131·24-s + 0.403·26-s − 1.07·27-s − 1.68·28-s + 0.284·29-s − 1.25·31-s − 1.43·32-s + 0.120·33-s + 0.520·34-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1−169T |
good | 2 | 1−8.23T+32T2 |
| 3 | 1−11.6T+243T2 |
| 7 | 1+195.T+1.68e4T2 |
| 11 | 1−64.5T+1.61e5T2 |
| 17 | 1−426.T+1.41e6T2 |
| 19 | 1+959.T+2.47e6T2 |
| 23 | 1+499.T+6.43e6T2 |
| 29 | 1−1.28e3T+2.05e7T2 |
| 31 | 1+6.73e3T+2.86e7T2 |
| 37 | 1+6.21e3T+6.93e7T2 |
| 41 | 1+6.49e3T+1.15e8T2 |
| 43 | 1+1.56e4T+1.47e8T2 |
| 47 | 1+6.29e3T+2.29e8T2 |
| 53 | 1−4.03e4T+4.18e8T2 |
| 59 | 1−2.56e4T+7.14e8T2 |
| 61 | 1−2.41e4T+8.44e8T2 |
| 67 | 1+3.91e4T+1.35e9T2 |
| 71 | 1+3.26e4T+1.80e9T2 |
| 73 | 1−1.45e4T+2.07e9T2 |
| 79 | 1−7.90e4T+3.07e9T2 |
| 83 | 1−1.02e5T+3.93e9T2 |
| 89 | 1+4.81e4T+5.58e9T2 |
| 97 | 1−7.33e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.36135116299176545805545148329, −9.303601173925032901600279594453, −8.511630872512766324982040592189, −7.02750572149212878156652535519, −6.21090166456278466689259959614, −5.30949018839157577329638233947, −3.79661444868374504347434088296, −3.32915391293092424549672969131, −2.27009398876332768304454620923, 0,
2.27009398876332768304454620923, 3.32915391293092424549672969131, 3.79661444868374504347434088296, 5.30949018839157577329638233947, 6.21090166456278466689259959614, 7.02750572149212878156652535519, 8.511630872512766324982040592189, 9.303601173925032901600279594453, 10.36135116299176545805545148329