Properties

Label 2-325-1.1-c1-0-7
Degree $2$
Conductor $325$
Sign $1$
Analytic cond. $2.59513$
Root an. cond. $1.61094$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.41·2-s − 2.82·3-s + 3.82·4-s − 6.82·6-s + 2.41·7-s + 4.41·8-s + 5.00·9-s + 6.41·11-s − 10.8·12-s + 13-s + 5.82·14-s + 2.99·16-s − 3.82·17-s + 12.0·18-s − 3.65·19-s − 6.82·21-s + 15.4·22-s − 3.17·23-s − 12.4·24-s + 2.41·26-s − 5.65·27-s + 9.24·28-s − 0.171·29-s + 1.24·31-s − 1.58·32-s − 18.1·33-s − 9.24·34-s + ⋯
L(s)  = 1  + 1.70·2-s − 1.63·3-s + 1.91·4-s − 2.78·6-s + 0.912·7-s + 1.56·8-s + 1.66·9-s + 1.93·11-s − 3.12·12-s + 0.277·13-s + 1.55·14-s + 0.749·16-s − 0.928·17-s + 2.84·18-s − 0.838·19-s − 1.49·21-s + 3.30·22-s − 0.661·23-s − 2.54·24-s + 0.473·26-s − 1.08·27-s + 1.74·28-s − 0.0318·29-s + 0.223·31-s − 0.280·32-s − 3.15·33-s − 1.58·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2.59513\)
Root analytic conductor: \(1.61094\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.328797356\)
\(L(\frac12)\) \(\approx\) \(2.328797356\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - T \)
good2 \( 1 - 2.41T + 2T^{2} \)
3 \( 1 + 2.82T + 3T^{2} \)
7 \( 1 - 2.41T + 7T^{2} \)
11 \( 1 - 6.41T + 11T^{2} \)
17 \( 1 + 3.82T + 17T^{2} \)
19 \( 1 + 3.65T + 19T^{2} \)
23 \( 1 + 3.17T + 23T^{2} \)
29 \( 1 + 0.171T + 29T^{2} \)
31 \( 1 - 1.24T + 31T^{2} \)
37 \( 1 + 6T + 37T^{2} \)
41 \( 1 + 5.65T + 41T^{2} \)
43 \( 1 - 0.828T + 43T^{2} \)
47 \( 1 - 3.58T + 47T^{2} \)
53 \( 1 - 3T + 53T^{2} \)
59 \( 1 - 13.2T + 59T^{2} \)
61 \( 1 - T + 61T^{2} \)
67 \( 1 + 2.75T + 67T^{2} \)
71 \( 1 + 9.31T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 + 6T + 79T^{2} \)
83 \( 1 - 6.89T + 83T^{2} \)
89 \( 1 + 8.48T + 89T^{2} \)
97 \( 1 + 0.828T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.69118453302313807260667866569, −11.31619403154329265275011337116, −10.39365476407442346724634841233, −8.751752179507925201596945156451, −6.95476289889479535444152902723, −6.41937001867003862882005633423, −5.57823781576911185338576533511, −4.55722141207635688699446633808, −3.97464248680390603921789220431, −1.71771130309606177029769269375, 1.71771130309606177029769269375, 3.97464248680390603921789220431, 4.55722141207635688699446633808, 5.57823781576911185338576533511, 6.41937001867003862882005633423, 6.95476289889479535444152902723, 8.751752179507925201596945156451, 10.39365476407442346724634841233, 11.31619403154329265275011337116, 11.69118453302313807260667866569

Graph of the $Z$-function along the critical line