Properties

Label 2-325-1.1-c1-0-15
Degree $2$
Conductor $325$
Sign $1$
Analytic cond. $2.59513$
Root an. cond. $1.61094$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.41·2-s + 1.41·3-s + 3.82·4-s + 3.41·6-s − 4.82·7-s + 4.41·8-s − 0.999·9-s + 3.41·11-s + 5.41·12-s + 13-s − 11.6·14-s + 2.99·16-s − 0.828·17-s − 2.41·18-s + 0.585·19-s − 6.82·21-s + 8.24·22-s − 1.41·23-s + 6.24·24-s + 2.41·26-s − 5.65·27-s − 18.4·28-s − 5.65·29-s + 1.75·31-s − 1.58·32-s + 4.82·33-s − 1.99·34-s + ⋯
L(s)  = 1  + 1.70·2-s + 0.816·3-s + 1.91·4-s + 1.39·6-s − 1.82·7-s + 1.56·8-s − 0.333·9-s + 1.02·11-s + 1.56·12-s + 0.277·13-s − 3.11·14-s + 0.749·16-s − 0.200·17-s − 0.569·18-s + 0.134·19-s − 1.49·21-s + 1.75·22-s − 0.294·23-s + 1.27·24-s + 0.473·26-s − 1.08·27-s − 3.49·28-s − 1.05·29-s + 0.315·31-s − 0.280·32-s + 0.840·33-s − 0.342·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2.59513\)
Root analytic conductor: \(1.61094\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.515462478\)
\(L(\frac12)\) \(\approx\) \(3.515462478\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - T \)
good2 \( 1 - 2.41T + 2T^{2} \)
3 \( 1 - 1.41T + 3T^{2} \)
7 \( 1 + 4.82T + 7T^{2} \)
11 \( 1 - 3.41T + 11T^{2} \)
17 \( 1 + 0.828T + 17T^{2} \)
19 \( 1 - 0.585T + 19T^{2} \)
23 \( 1 + 1.41T + 23T^{2} \)
29 \( 1 + 5.65T + 29T^{2} \)
31 \( 1 - 1.75T + 31T^{2} \)
37 \( 1 - 8.48T + 37T^{2} \)
41 \( 1 + 3.17T + 41T^{2} \)
43 \( 1 - 11.0T + 43T^{2} \)
47 \( 1 - 4.82T + 47T^{2} \)
53 \( 1 + 2.48T + 53T^{2} \)
59 \( 1 - 1.75T + 59T^{2} \)
61 \( 1 + 8T + 61T^{2} \)
67 \( 1 - 2T + 67T^{2} \)
71 \( 1 - 11.8T + 71T^{2} \)
73 \( 1 + 8.48T + 73T^{2} \)
79 \( 1 + 8.48T + 79T^{2} \)
83 \( 1 - 3.17T + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 - 7.65T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.98851720669363499114006441604, −11.03695148106214761386622810969, −9.637457415543295880970012135246, −8.965366051204050460810662430924, −7.40532028527185204058298052249, −6.36564015065318793199579584516, −5.81638356123165706209115181429, −4.11233001423733721128704766639, −3.43407149252504548147344905218, −2.52103154495935654149200801156, 2.52103154495935654149200801156, 3.43407149252504548147344905218, 4.11233001423733721128704766639, 5.81638356123165706209115181429, 6.36564015065318793199579584516, 7.40532028527185204058298052249, 8.965366051204050460810662430924, 9.637457415543295880970012135246, 11.03695148106214761386622810969, 11.98851720669363499114006441604

Graph of the $Z$-function along the critical line