L(s) = 1 | + 2.41·2-s + 1.41·3-s + 3.82·4-s + 3.41·6-s − 4.82·7-s + 4.41·8-s − 0.999·9-s + 3.41·11-s + 5.41·12-s + 13-s − 11.6·14-s + 2.99·16-s − 0.828·17-s − 2.41·18-s + 0.585·19-s − 6.82·21-s + 8.24·22-s − 1.41·23-s + 6.24·24-s + 2.41·26-s − 5.65·27-s − 18.4·28-s − 5.65·29-s + 1.75·31-s − 1.58·32-s + 4.82·33-s − 1.99·34-s + ⋯ |
L(s) = 1 | + 1.70·2-s + 0.816·3-s + 1.91·4-s + 1.39·6-s − 1.82·7-s + 1.56·8-s − 0.333·9-s + 1.02·11-s + 1.56·12-s + 0.277·13-s − 3.11·14-s + 0.749·16-s − 0.200·17-s − 0.569·18-s + 0.134·19-s − 1.49·21-s + 1.75·22-s − 0.294·23-s + 1.27·24-s + 0.473·26-s − 1.08·27-s − 3.49·28-s − 1.05·29-s + 0.315·31-s − 0.280·32-s + 0.840·33-s − 0.342·34-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(325s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.515462478 |
L(21) |
≈ |
3.515462478 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1−T |
good | 2 | 1−2.41T+2T2 |
| 3 | 1−1.41T+3T2 |
| 7 | 1+4.82T+7T2 |
| 11 | 1−3.41T+11T2 |
| 17 | 1+0.828T+17T2 |
| 19 | 1−0.585T+19T2 |
| 23 | 1+1.41T+23T2 |
| 29 | 1+5.65T+29T2 |
| 31 | 1−1.75T+31T2 |
| 37 | 1−8.48T+37T2 |
| 41 | 1+3.17T+41T2 |
| 43 | 1−11.0T+43T2 |
| 47 | 1−4.82T+47T2 |
| 53 | 1+2.48T+53T2 |
| 59 | 1−1.75T+59T2 |
| 61 | 1+8T+61T2 |
| 67 | 1−2T+67T2 |
| 71 | 1−11.8T+71T2 |
| 73 | 1+8.48T+73T2 |
| 79 | 1+8.48T+79T2 |
| 83 | 1−3.17T+83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1−7.65T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.98851720669363499114006441604, −11.03695148106214761386622810969, −9.637457415543295880970012135246, −8.965366051204050460810662430924, −7.40532028527185204058298052249, −6.36564015065318793199579584516, −5.81638356123165706209115181429, −4.11233001423733721128704766639, −3.43407149252504548147344905218, −2.52103154495935654149200801156,
2.52103154495935654149200801156, 3.43407149252504548147344905218, 4.11233001423733721128704766639, 5.81638356123165706209115181429, 6.36564015065318793199579584516, 7.40532028527185204058298052249, 8.965366051204050460810662430924, 9.637457415543295880970012135246, 11.03695148106214761386622810969, 11.98851720669363499114006441604