Properties

Label 2-3240-9.7-c1-0-24
Degree $2$
Conductor $3240$
Sign $0.766 + 0.642i$
Analytic cond. $25.8715$
Root an. cond. $5.08640$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)5-s + (−1 + 1.73i)7-s + (1 − 1.73i)11-s + (−2 − 3.46i)13-s + 2·17-s + 4·19-s + (4 + 6.92i)23-s + (−0.499 + 0.866i)25-s + (−5 + 8.66i)29-s + (−2 − 3.46i)31-s + 1.99·35-s + (4 − 6.92i)43-s + (4 − 6.92i)47-s + (1.50 + 2.59i)49-s − 6·53-s + ⋯
L(s)  = 1  + (−0.223 − 0.387i)5-s + (−0.377 + 0.654i)7-s + (0.301 − 0.522i)11-s + (−0.554 − 0.960i)13-s + 0.485·17-s + 0.917·19-s + (0.834 + 1.44i)23-s + (−0.0999 + 0.173i)25-s + (−0.928 + 1.60i)29-s + (−0.359 − 0.622i)31-s + 0.338·35-s + (0.609 − 1.05i)43-s + (0.583 − 1.01i)47-s + (0.214 + 0.371i)49-s − 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3240\)    =    \(2^{3} \cdot 3^{4} \cdot 5\)
Sign: $0.766 + 0.642i$
Analytic conductor: \(25.8715\)
Root analytic conductor: \(5.08640\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3240} (2161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3240,\ (\ :1/2),\ 0.766 + 0.642i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.568979760\)
\(L(\frac12)\) \(\approx\) \(1.568979760\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (0.5 + 0.866i)T \)
good7 \( 1 + (1 - 1.73i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (2 + 3.46i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 + (-4 - 6.92i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (5 - 8.66i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (2 + 3.46i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-4 + 6.92i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-4 + 6.92i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + (7 + 12.1i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-7 + 12.1i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-2 - 3.46i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 12T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 + (-6 + 10.3i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-2 + 3.46i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 - 12T + 89T^{2} \)
97 \( 1 + (-7 + 12.1i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.742890953810567990407208661612, −7.63004399668099205975332266263, −7.37451708309472897532855515521, −6.15890544092952890365779185306, −5.39802955626714196967458616118, −5.04366737560992184796880257472, −3.48974079891533671451568922716, −3.26061608063526723867505453473, −1.87727151863891096223848118861, −0.62823639313851453459713161561, 0.915317226796472180235243374418, 2.24450231914837688340994498212, 3.16561483306824179826255778109, 4.15047594691703027703477778111, 4.66963632843920062930073822790, 5.83200602809844329235036109013, 6.62723176863843212535958603291, 7.29406430226838872347904809550, 7.71447420287431932324308901774, 8.869462372282295202957172107483

Graph of the $Z$-function along the critical line