L(s) = 1 | + (−0.5 − 0.866i)5-s + (−1 + 1.73i)7-s + (1 − 1.73i)11-s + (−2 − 3.46i)13-s + 2·17-s + 4·19-s + (4 + 6.92i)23-s + (−0.499 + 0.866i)25-s + (−5 + 8.66i)29-s + (−2 − 3.46i)31-s + 1.99·35-s + (4 − 6.92i)43-s + (4 − 6.92i)47-s + (1.50 + 2.59i)49-s − 6·53-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (−0.377 + 0.654i)7-s + (0.301 − 0.522i)11-s + (−0.554 − 0.960i)13-s + 0.485·17-s + 0.917·19-s + (0.834 + 1.44i)23-s + (−0.0999 + 0.173i)25-s + (−0.928 + 1.60i)29-s + (−0.359 − 0.622i)31-s + 0.338·35-s + (0.609 − 1.05i)43-s + (0.583 − 1.01i)47-s + (0.214 + 0.371i)49-s − 0.824·53-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.766+0.642i)Λ(2−s)
Λ(s)=(=(3240s/2ΓC(s+1/2)L(s)(0.766+0.642i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
0.766+0.642i
|
Analytic conductor: |
25.8715 |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(2161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :1/2), 0.766+0.642i)
|
Particular Values
L(1) |
≈ |
1.568979760 |
L(21) |
≈ |
1.568979760 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5+0.866i)T |
good | 7 | 1+(1−1.73i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−1+1.73i)T+(−5.5−9.52i)T2 |
| 13 | 1+(2+3.46i)T+(−6.5+11.2i)T2 |
| 17 | 1−2T+17T2 |
| 19 | 1−4T+19T2 |
| 23 | 1+(−4−6.92i)T+(−11.5+19.9i)T2 |
| 29 | 1+(5−8.66i)T+(−14.5−25.1i)T2 |
| 31 | 1+(2+3.46i)T+(−15.5+26.8i)T2 |
| 37 | 1+37T2 |
| 41 | 1+(−20.5+35.5i)T2 |
| 43 | 1+(−4+6.92i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−4+6.92i)T+(−23.5−40.7i)T2 |
| 53 | 1+6T+53T2 |
| 59 | 1+(7+12.1i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−7+12.1i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−2−3.46i)T+(−33.5+58.0i)T2 |
| 71 | 1+12T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1+(−6+10.3i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−2+3.46i)T+(−41.5−71.8i)T2 |
| 89 | 1−12T+89T2 |
| 97 | 1+(−7+12.1i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.742890953810567990407208661612, −7.63004399668099205975332266263, −7.37451708309472897532855515521, −6.15890544092952890365779185306, −5.39802955626714196967458616118, −5.04366737560992184796880257472, −3.48974079891533671451568922716, −3.26061608063526723867505453473, −1.87727151863891096223848118861, −0.62823639313851453459713161561,
0.915317226796472180235243374418, 2.24450231914837688340994498212, 3.16561483306824179826255778109, 4.15047594691703027703477778111, 4.66963632843920062930073822790, 5.83200602809844329235036109013, 6.62723176863843212535958603291, 7.29406430226838872347904809550, 7.71447420287431932324308901774, 8.869462372282295202957172107483