L(s) = 1 | + (0.5 + 0.866i)5-s + (1.18 − 2.05i)7-s + (−1.68 + 2.92i)11-s + (−1.18 − 2.05i)13-s − 4.74·17-s + 19-s + (−0.186 − 0.322i)23-s + (−0.499 + 0.866i)25-s + (−1.68 + 2.92i)29-s + (3.05 + 5.29i)31-s + 2.37·35-s + 6·37-s + (5.87 + 10.1i)41-s + (−3.37 + 5.84i)43-s + (−1.81 + 3.14i)47-s + ⋯ |
L(s) = 1 | + (0.223 + 0.387i)5-s + (0.448 − 0.776i)7-s + (−0.508 + 0.880i)11-s + (−0.328 − 0.569i)13-s − 1.15·17-s + 0.229·19-s + (−0.0388 − 0.0672i)23-s + (−0.0999 + 0.173i)25-s + (−0.313 + 0.542i)29-s + (0.549 + 0.951i)31-s + 0.400·35-s + 0.986·37-s + (0.917 + 1.58i)41-s + (−0.514 + 0.890i)43-s + (−0.264 + 0.458i)47-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.173−0.984i)Λ(2−s)
Λ(s)=(=(3240s/2ΓC(s+1/2)L(s)(0.173−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
0.173−0.984i
|
Analytic conductor: |
25.8715 |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(2161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :1/2), 0.173−0.984i)
|
Particular Values
L(1) |
≈ |
1.454197669 |
L(21) |
≈ |
1.454197669 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−0.5−0.866i)T |
good | 7 | 1+(−1.18+2.05i)T+(−3.5−6.06i)T2 |
| 11 | 1+(1.68−2.92i)T+(−5.5−9.52i)T2 |
| 13 | 1+(1.18+2.05i)T+(−6.5+11.2i)T2 |
| 17 | 1+4.74T+17T2 |
| 19 | 1−T+19T2 |
| 23 | 1+(0.186+0.322i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.68−2.92i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−3.05−5.29i)T+(−15.5+26.8i)T2 |
| 37 | 1−6T+37T2 |
| 41 | 1+(−5.87−10.1i)T+(−20.5+35.5i)T2 |
| 43 | 1+(3.37−5.84i)T+(−21.5−37.2i)T2 |
| 47 | 1+(1.81−3.14i)T+(−23.5−40.7i)T2 |
| 53 | 1−7.11T+53T2 |
| 59 | 1+(−2.5−4.33i)T+(−29.5+51.0i)T2 |
| 61 | 1+(0.627−1.08i)T+(−30.5−52.8i)T2 |
| 67 | 1+(5.37+9.30i)T+(−33.5+58.0i)T2 |
| 71 | 1+1.37T+71T2 |
| 73 | 1−3.25T+73T2 |
| 79 | 1+(4.37−7.57i)T+(−39.5−68.4i)T2 |
| 83 | 1+(5−8.66i)T+(−41.5−71.8i)T2 |
| 89 | 1+1.37T+89T2 |
| 97 | 1+(3.37−5.84i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.773071225898285748457803507611, −7.917670739725615947470090316414, −7.35974477052713977669017572903, −6.70422370775092627075043268479, −5.83353693111733644051869985713, −4.76410206688183916965380006555, −4.40710131673675750102138561264, −3.13493548238853908723297514829, −2.33345830853821436962046102734, −1.17321888833871824271831428920,
0.46400530550641295319183729903, 2.00340359272702501072677485001, 2.57703439589641857720868267979, 3.87908493669760562453600206740, 4.67692977067778736597453657844, 5.54105862305303005650400098581, 6.02252127372296267759680190717, 7.02019886011412688978816310250, 7.85372099658644272220522693457, 8.665465751586427530188620630444