L(s) = 1 | + (0.5 + 0.866i)5-s + (1.18 − 2.05i)7-s + (−1.68 + 2.92i)11-s + (−1.18 − 2.05i)13-s − 4.74·17-s + 19-s + (−0.186 − 0.322i)23-s + (−0.499 + 0.866i)25-s + (−1.68 + 2.92i)29-s + (3.05 + 5.29i)31-s + 2.37·35-s + 6·37-s + (5.87 + 10.1i)41-s + (−3.37 + 5.84i)43-s + (−1.81 + 3.14i)47-s + ⋯ |
L(s) = 1 | + (0.223 + 0.387i)5-s + (0.448 − 0.776i)7-s + (−0.508 + 0.880i)11-s + (−0.328 − 0.569i)13-s − 1.15·17-s + 0.229·19-s + (−0.0388 − 0.0672i)23-s + (−0.0999 + 0.173i)25-s + (−0.313 + 0.542i)29-s + (0.549 + 0.951i)31-s + 0.400·35-s + 0.986·37-s + (0.917 + 1.58i)41-s + (−0.514 + 0.890i)43-s + (−0.264 + 0.458i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.454197669\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.454197669\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
good | 7 | \( 1 + (-1.18 + 2.05i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.68 - 2.92i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.18 + 2.05i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 4.74T + 17T^{2} \) |
| 19 | \( 1 - T + 19T^{2} \) |
| 23 | \( 1 + (0.186 + 0.322i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.68 - 2.92i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.05 - 5.29i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 6T + 37T^{2} \) |
| 41 | \( 1 + (-5.87 - 10.1i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.37 - 5.84i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.81 - 3.14i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 7.11T + 53T^{2} \) |
| 59 | \( 1 + (-2.5 - 4.33i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.627 - 1.08i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.37 + 9.30i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.37T + 71T^{2} \) |
| 73 | \( 1 - 3.25T + 73T^{2} \) |
| 79 | \( 1 + (4.37 - 7.57i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5 - 8.66i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 1.37T + 89T^{2} \) |
| 97 | \( 1 + (3.37 - 5.84i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.773071225898285748457803507611, −7.917670739725615947470090316414, −7.35974477052713977669017572903, −6.70422370775092627075043268479, −5.83353693111733644051869985713, −4.76410206688183916965380006555, −4.40710131673675750102138561264, −3.13493548238853908723297514829, −2.33345830853821436962046102734, −1.17321888833871824271831428920,
0.46400530550641295319183729903, 2.00340359272702501072677485001, 2.57703439589641857720868267979, 3.87908493669760562453600206740, 4.67692977067778736597453657844, 5.54105862305303005650400098581, 6.02252127372296267759680190717, 7.02019886011412688978816310250, 7.85372099658644272220522693457, 8.665465751586427530188620630444