L(s) = 1 | + (−1 − 2i)5-s − 2i·7-s + 5·11-s + 4i·13-s + 6i·17-s + 7·19-s + 4i·23-s + (−3 + 4i)25-s − 5·29-s − 3·31-s + (−4 + 2i)35-s + 2i·37-s − 7·41-s + 6i·43-s + 6i·47-s + ⋯ |
L(s) = 1 | + (−0.447 − 0.894i)5-s − 0.755i·7-s + 1.50·11-s + 1.10i·13-s + 1.45i·17-s + 1.60·19-s + 0.834i·23-s + (−0.600 + 0.800i)25-s − 0.928·29-s − 0.538·31-s + (−0.676 + 0.338i)35-s + 0.328i·37-s − 1.09·41-s + 0.914i·43-s + 0.875i·47-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.894−0.447i)Λ(2−s)
Λ(s)=(=(3240s/2ΓC(s+1/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
25.8715 |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :1/2), 0.894−0.447i)
|
Particular Values
L(1) |
≈ |
1.731452527 |
L(21) |
≈ |
1.731452527 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(1+2i)T |
good | 7 | 1+2iT−7T2 |
| 11 | 1−5T+11T2 |
| 13 | 1−4iT−13T2 |
| 17 | 1−6iT−17T2 |
| 19 | 1−7T+19T2 |
| 23 | 1−4iT−23T2 |
| 29 | 1+5T+29T2 |
| 31 | 1+3T+31T2 |
| 37 | 1−2iT−37T2 |
| 41 | 1+7T+41T2 |
| 43 | 1−6iT−43T2 |
| 47 | 1−6iT−47T2 |
| 53 | 1+10iT−53T2 |
| 59 | 1+15T+59T2 |
| 61 | 1−14T+61T2 |
| 67 | 1−4iT−67T2 |
| 71 | 1−5T+71T2 |
| 73 | 1−14iT−73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1−14iT−83T2 |
| 89 | 1−3T+89T2 |
| 97 | 1−2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.751247200358200256677502074403, −7.973103881985362746939187645620, −7.23408295871254035710001612488, −6.56678118655913522222147313566, −5.64194709881183865967712858245, −4.75515824880593334908041869324, −3.74976450356557121483933309561, −3.72212784264987148652800031930, −1.68918136824575440729859233700, −1.15113616788828396308145435499,
0.61838830697776382225402053268, 2.10778927255725965753624548073, 3.14899033437529600440979433568, 3.59387681436439858374163140986, 4.82508550326625055024023385626, 5.61749562875058607116179341784, 6.37484696475546100397345377836, 7.25816312128100823202082167354, 7.59925169840168080336403985486, 8.739766977327316168551549030044