L(s) = 1 | − 2-s + 4-s + 5-s − 1.73·7-s − 8-s − 10-s + 1.73·13-s + 1.73·14-s + 16-s + 19-s + 20-s − 23-s + 25-s − 1.73·26-s − 1.73·28-s − 32-s − 1.73·35-s − 38-s − 40-s − 1.73·41-s + 46-s + 47-s + 1.99·49-s − 50-s + 1.73·52-s + 53-s + 1.73·56-s + ⋯ |
L(s) = 1 | − 2-s + 4-s + 5-s − 1.73·7-s − 8-s − 10-s + 1.73·13-s + 1.73·14-s + 16-s + 19-s + 20-s − 23-s + 25-s − 1.73·26-s − 1.73·28-s − 32-s − 1.73·35-s − 38-s − 40-s − 1.73·41-s + 46-s + 47-s + 1.99·49-s − 50-s + 1.73·52-s + 53-s + 1.73·56-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(3240s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
1
|
Analytic conductor: |
1.61697 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(1459,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.8682824770 |
L(21) |
≈ |
0.8682824770 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 5 | 1−T |
good | 7 | 1+1.73T+T2 |
| 11 | 1+T2 |
| 13 | 1−1.73T+T2 |
| 17 | 1−T2 |
| 19 | 1−T+T2 |
| 23 | 1+T+T2 |
| 29 | 1−T2 |
| 31 | 1−T2 |
| 37 | 1+T2 |
| 41 | 1+1.73T+T2 |
| 43 | 1−T2 |
| 47 | 1−T+T2 |
| 53 | 1−T+T2 |
| 59 | 1−1.73T+T2 |
| 61 | 1−T2 |
| 67 | 1−T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.897890477540212442963696653360, −8.397375180912137666304748937216, −7.21853567200084208870066654996, −6.61138011113362149162249830833, −6.01154955992664242009573294743, −5.52496360970558548656805260817, −3.74303788260714063539041396806, −3.15290028292440029218077555315, −2.13504834424517437338992909118, −0.978875688099410759521335671866,
0.978875688099410759521335671866, 2.13504834424517437338992909118, 3.15290028292440029218077555315, 3.74303788260714063539041396806, 5.52496360970558548656805260817, 6.01154955992664242009573294743, 6.61138011113362149162249830833, 7.21853567200084208870066654996, 8.397375180912137666304748937216, 8.897890477540212442963696653360