L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s − 0.999·8-s + 0.999·10-s + (−0.5 − 0.866i)11-s + (0.5 − 0.866i)13-s + (−0.5 − 0.866i)16-s + 17-s + (0.499 + 0.866i)20-s + (0.499 − 0.866i)22-s + (−0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s + 0.999·26-s + (−0.5 − 0.866i)29-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s − 0.999·8-s + 0.999·10-s + (−0.5 − 0.866i)11-s + (0.5 − 0.866i)13-s + (−0.5 − 0.866i)16-s + 17-s + (0.499 + 0.866i)20-s + (0.499 − 0.866i)22-s + (−0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s + 0.999·26-s + (−0.5 − 0.866i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.608174988\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.608174988\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
good | 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - 2T + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.526899519914217202915702190397, −8.023261178583268220212120078759, −7.61291398200573893463308492194, −6.21464575415869420849156469051, −5.83593196500109075263555327919, −5.30114540996283608005001692517, −4.34118311017043381265339896819, −3.50480834060103045059889593608, −2.55051594288242106292969631069, −0.892492290913744420472129927478,
1.46727638613897874483818129171, 2.34783654833587842096086494410, 3.12465080369670697783704529537, 4.04776543749108176063140305406, 4.85468627837880322833774618513, 5.74434651238776784845013659111, 6.40636365550386355958586814597, 7.16641169994682186097471998464, 8.111182062504364693057458488124, 9.164225326503075093526290437806