L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s − 0.999·8-s + 0.999·10-s + (−0.5 − 0.866i)11-s + (0.5 − 0.866i)13-s + (−0.5 − 0.866i)16-s + 17-s + (0.499 + 0.866i)20-s + (0.499 − 0.866i)22-s + (−0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s + 0.999·26-s + (−0.5 − 0.866i)29-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s − 0.999·8-s + 0.999·10-s + (−0.5 − 0.866i)11-s + (0.5 − 0.866i)13-s + (−0.5 − 0.866i)16-s + 17-s + (0.499 + 0.866i)20-s + (0.499 − 0.866i)22-s + (−0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s + 0.999·26-s + (−0.5 − 0.866i)29-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.984−0.173i)Λ(1−s)
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.984−0.173i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
0.984−0.173i
|
Analytic conductor: |
1.61697 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(1349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :0), 0.984−0.173i)
|
Particular Values
L(21) |
≈ |
1.608174988 |
L(21) |
≈ |
1.608174988 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 3 | 1 |
| 5 | 1+(−0.5+0.866i)T |
good | 7 | 1+(0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 13 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 17 | 1−T+T2 |
| 19 | 1−T2 |
| 23 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 29 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 31 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1−2T+T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 47 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.526899519914217202915702190397, −8.023261178583268220212120078759, −7.61291398200573893463308492194, −6.21464575415869420849156469051, −5.83593196500109075263555327919, −5.30114540996283608005001692517, −4.34118311017043381265339896819, −3.50480834060103045059889593608, −2.55051594288242106292969631069, −0.892492290913744420472129927478,
1.46727638613897874483818129171, 2.34783654833587842096086494410, 3.12465080369670697783704529537, 4.04776543749108176063140305406, 4.85468627837880322833774618513, 5.74434651238776784845013659111, 6.40636365550386355958586814597, 7.16641169994682186097471998464, 8.111182062504364693057458488124, 9.164225326503075093526290437806